Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29990264

RESUMO

Association mapping of genetic diseases has attracted extensive research interest during the recent years. However, most of the methodologies introduced so far suffer from spurious inference of the associated sites due to population inhomogeneities. In this paper, we introduce a statistical framework to compensate for this shortcoming by equipping the current methodologies with a state-of-the-art clustering algorithm being widely used in population genetics applications. The proposed framework jointly infers the disease-associated factors and the hidden population structures. In this regard, a Markov Chain-Monte Carlo (MCMC) procedure has been employed to assess the posterior probability distribution of the model parameters. We have implemented our proposed framework on a software package whose performance is extensively evaluated on a number of synthetic datasets, and compared to some of the well-known existing methods such as STRUCTURE. It has been shown that in extreme scenarios, up to $10-15$10-15 percent of improvement in the inference accuracy is achieved with a moderate increase in computational complexity.


Assuntos
Biologia Computacional/métodos , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Modelos Estatísticos , Algoritmos , Análise por Conglomerados , Humanos , Cadeias de Markov , Modelos Genéticos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...