Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e32911, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022051

RESUMO

Many-objective optimization (MaO) is an important aspect of engineering scenarios. In many-objective optimization algorithms (MaOAs), a key challenge is to strike a balance between diversity and convergence. MaOAs employs various tactics to either enhance selection pressure for better convergence and/or implements additional measures for sustaining diversity. With increase in number of objectives, the process becomes more complex, mainly due to challenges in achieving convergence during population selection. This paper introduces a novel Many-Objective Ant Lion Optimizer (MaOALO), featuring the widely-popular ant lion optimizer algorithm. This method utilizes reference point, niche preserve and information feedback mechanism (IFM), to enhance the convergence and diversity of the population. Extensive experimental tests on five real-world (RWMaOP1- RWMaOP5) optimization problems and standard problem classes, including MaF1-MaF15 (for 5, 9 and 15 objectives), DTLZ1-DTLZ7 (for 8 objectives) has been carried out. It is shown that MaOALO is superior compared to ARMOEA, NSGA-III, MaOTLBO, RVEA, MaOABC-TA, DSAE, RL-RVEA and MaOEA-IH algorithms in terms of GD, IGD, SP, SD, HV and RT metrics. The MaOALO source code is available at: https://github.com/kanak02/MaOALO.

2.
Heliyon ; 10(5): e26665, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486727

RESUMO

This research introduces the Multi-Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi-objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition-Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non-dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi-objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real-world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two-bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non-dominated sorting grey wolf optimizer (NSGWO), multiobjective multi-verse optimization (MOMVO), non-dominated sorting genetic algorithm (NSGA-II), decomposition-based multiobjective evolutionary algorithm (MOEA/D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.

3.
Heliyon ; 10(4): e26369, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404848

RESUMO

In this study, we tackle the challenge of optimizing the design of a Brushless Direct Current (BLDC) motor. Utilizing an established analytical model, we introduced the Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) method, a biomimetic approach based on Pareto optimality, dominance, and external archiving. We initially tested MOGNDO on standard multi-objective benchmark functions, where it showed strong performance. When applied to the BLDC motor design with the objectives of either maximizing operational efficiency or minimizing motor mass, the MOGNDO algorithm consistently outperformed other techniques like Ant Lion Optimizer (ALO), Ion Motion Optimization (IMO), and Sine Cosine Algorithm (SCA). Specifically, MOGNDO yielded the most optimal values across efficiency and mass metrics, providing practical solutions for real-world BLDC motor design. The MOGNDO source code is available at: https://github.com/kanak02/MOGNDO.

4.
Environ Sci Pollut Res Int ; 31(7): 11037-11080, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217814

RESUMO

The large use of renewable sources and plug-in electric vehicles (PEVs) would play a critical part in achieving a low-carbon energy source and reducing greenhouse gas emissions, which are the primary cause of global warming. On the other hand, predicting the instability and intermittent nature of wind and solar power output poses significant challenges. To reduce the unpredictable and random nature of renewable microgrids (MGs) and additional unreliable energy sources, a battery energy storage system (BESS) is connected to an MG system. The uncoordinated charging of PEVs offers further hurdles to the unit commitment (UC) required in contemporary MG management. The UC problem is an exceptionally difficult optimization problem due to the mixed-integer structure, large scale, and nonlinearity. It is further complicated by the multiple uncertainties associated with renewable sources, PEV charging and discharging, and electricity market pricing, in addition to the BESS degradation factor. Therefore, in this study, a new variant of mixed-integer particle swarm optimizer is introduced as a reliable optimization framework to handle the UC problem. This study considers six various case studies of UC problems, including uncertainties and battery degradation to validate the reliability and robustness of the proposed algorithm. Out of which, two case studies defined as a multiobjective problem, and it has been transformed into a single-objective model using different weight factors. The simulation findings demonstrate that the proposed approach and improved methodology for the UC problem are effective than its peers. Based on the average results, the economic consequences of numerous scenarios are thoroughly examined and contrasted, and some significant conclusions are presented.


Assuntos
Energia Solar , Vento , Reprodutibilidade dos Testes , Fontes de Energia Elétrica , Fontes Geradoras de Energia , Energia Renovável
5.
Sci Rep ; 14(1): 1816, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245654

RESUMO

The exponential distribution optimizer (EDO) represents a heuristic approach, capitalizing on exponential distribution theory to identify global solutions for complex optimization challenges. This study extends the EDO's applicability by introducing its multi-objective version, the multi-objective EDO (MOEDO), enhanced with elite non-dominated sorting and crowding distance mechanisms. An information feedback mechanism (IFM) is integrated into MOEDO, aiming to balance exploration and exploitation, thus improving convergence and mitigating the stagnation in local optima, a notable limitation in traditional approaches. Our research demonstrates MOEDO's superiority over renowned algorithms such as MOMPA, NSGA-II, MOAOA, MOEA/D and MOGNDO. This is evident in 72.58% of test scenarios, utilizing performance metrics like GD, IGD, HV, SP, SD and RT across benchmark test collections (DTLZ, ZDT and various constraint problems) and five real-world engineering design challenges. The Wilcoxon Rank Sum Test (WRST) further confirms MOEDO as a competitive multi-objective optimization algorithm, particularly in scenarios where existing methods struggle with balancing diversity and convergence efficiency. MOEDO's robust performance, even in complex real-world applications, underscores its potential as an innovative solution in the optimization domain. The MOEDO source code is available at: https://github.com/kanak02/MOEDO .

6.
Exp Parasitol ; 254: 108619, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37739025

RESUMO

Vector-borne diseases are a major burden to human health. It accounts for more than 17% of the total infectious diseases and causes more than 0.7 million deaths annually. Mosquitoes are potential vectors for many vector-borne diseases that cause illness to public health, globally. Vector species of the genus Aedes i.e., Aedes aegypti and Aedes albopictus are the vector for many arboviruses such as dengue, chikungunya, yellow fever, and Zika in India. Dengue is one of the most prevalent viral infections causing a high number of cases throughout the world and resistance to insecticides can be a reason for the failure of vector control strategies. This study was carried out to check the degree of resistance among these vectors in the Chittorgarh district of Rajasthan, India through standard World Health Organization protocol. The resistance was monitored to pyrethroids i.e., deltamethrin (0.05%), permethrin (0.75%), alphacypermethrin (0.05%); organochlorine i.e., DDT (4%), and an organophosphate larvicide i.e., temephos (0.02 mg/L) in both vector species. Complete resistance to DDT was observed among all tested populations of both species. All tested populations of Aedes albopictus were found susceptible to pyrethroids. Aedes aegypti was found resistant in the Mangalwad population, unconfirmed resistant in Bhopalsagar and Rashmi populations while the remaining are susceptible to permethrin. The Mangalwad population was also found unconfirmed resistant to deltamethrin and alphacypermethrin. Larvae of both species were found susceptible to temephos. Decreasing the use of DDT will help to reduce the impact on human health and environmental contamination. However, temephos as a larvicide, deltamethrin, and alphacypermethrin as an adulticide can be used in critical disease outbreaks at a minimum concentration as mosquitoes are found susceptible in the study area.

7.
Sci Rep ; 13(1): 15909, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741875

RESUMO

The primary objective of this study is to delve into the application and validation of the Resistance Capacitance Optimization Algorithm (RCOA)-a new, physics-inspired metaheuristic optimization algorithm. The RCOA, intriguingly inspired by the time response of a resistance-capacitance circuit to a sudden voltage fluctuation, has been earmarked for solving complex numerical and engineering design optimization problems. Uniquely, the RCOA operates without any control/tunable parameters. In the first phase of this study, we evaluated the RCOA's credibility and functionality by deploying it on a set of 23 benchmark test functions. This was followed by thoroughly examining its application in eight distinct constrained engineering design optimization scenarios. This methodical approach was undertaken to dissect and understand the algorithm's exploration and exploitation phases, leveraging standard benchmark functions as the yardstick. The principal findings underline the significant effectiveness of the RCOA, especially when contrasted against various state-of-the-art algorithms in the field. Beyond its apparent superiority, the RCOA was put through rigorous statistical non-parametric testing, further endorsing its reliability as an innovative tool for handling complex engineering design problems. The conclusion of this research underscores the RCOA's strong performance in terms of reliability and precision, particularly in tackling constrained engineering design optimization challenges. This statement, derived from the systematic study, strengthens RCOA's position as a potentially transformative tool in the mathematical optimization landscape. It also paves the way for further exploration and adaptation of physics-inspired algorithms in the broader realm of optimization problems.

8.
ISA Trans ; 116: 139-166, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33551129

RESUMO

Parameters for defining photovoltaic models using measured voltage-current​ characteristics are essential for simulation, control, and evaluation of photovoltaic-based systems. This paper proposes an enhanced chaotic JAYA algorithm to classify the parameters of various photovoltaic models, such as the single-diode and double-diode models, accurately and reliably. The proposed algorithm introduces a self-adaptive weight to regulate the trend to reach the optimal solution and avoid the worst solution in various phases of the search space. The self-adaptive weight capability also allows the proposed technique to reach the best solution at the earliest phase, and later, the local search process starts, which also increase the ability to explore. A three different chaotic process, including sine, logistics and tent map, is proposed to optimize the consistency of each generation's best solution. The proposed algorithm and its variants proposed are used to solve the parameter estimation problem of various PV models. To show the proficiency of the suggested algorithm and its variants, an extensive simulation is carried out using MATLAB/Simulink software. Two statistical tests are conducted and compared with the latest techniques for validating the performance of the suggested algorithm and its variants. Comprehensive analysis and experimental results display that the suggested algorithm can achieve highly competitive efficiency in terms of accuracy and reliability compared to other algorithms in the literature. This research will be backed up with extra online service and guidance for the paper's source code at https://premkumarmanoharan.wixsite.com/mysite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...