Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genom Data ; 23(1): 75, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274129

RESUMO

BACKGROUND: Here we release a new version of EchinoDB, EchinoDB v2.0 ( https://echinodb.uncc.edu ). EchinoDB is a database of genomic and transcriptomic data on echinoderms. The initial database consisted of groups of 749,397 orthologous and paralogous transcripts arranged in orthoclusters by sequence similarity. RESULTS: The updated version of EchinoDB includes two new major datasets: the RNA-Seq data of the brittle star Ophioderma brevispinum and the high-quality genomic assembly data of the green sea urchin Lytechinus variegatus. In addition, we enabled keyword searches for annotated data and installed an updated version of Sequenceserver to allow Basic Local Alignment Search Tool (BLAST) searches. The data are downloadable in FASTA format. The first version of EchinoDB appeared in 2016 and was implemented in GO on a local server. The new version has been updated using R Shiny to include new features and improvements in the application. Furthermore, EchinoDB now runs entirely in the cloud for increased reliability and scaling. CONCLUSION: EchinoDB serves a user base drawn from the fields of phylogenetics, developmental biology, genomics, physiology, neurobiology, and regeneration. As use cases, we illustrate the function of EchinoDB in retrieving components of signaling pathways involved in the tissue regeneration process of different echinoderms, including the emerging model species Ophioderma brevispinum. Moreover, we use EchinoDB to shed light on the conservation of the molecular components involved in two echinoderm-specific phenomena: spicule matrix proteins involved in the formation of stereom endoskeleton and the tensilin protein that contributes to the capacity of the connective tissues to quickly change its mechanical properties. The genes involved in the former had been previously studied in echinoids, while gene sequences involved in the latter had been previously described in holothuroids. Specifically, we ask (a) if the biomineralization-related proteins previously reported only in sea urchins are also present in other, non-echinoid, echinoderms and (b) if tensilin, the protein responsible for the control of stiffness of the mutable collagenous tissue, previously described in sea cucumbers, is conserved across the phylum.


Assuntos
Equinodermos , Transcriptoma , Animais , Transcriptoma/genética , Reprodutibilidade dos Testes , Equinodermos/genética , Genômica , Ouriços-do-Mar/genética , Proteínas/genética , Internet
2.
BMC Genomics ; 23(1): 574, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953768

RESUMO

BACKGROUND: Echinoderms are established models in experimental and developmental biology, however genomic resources are still lacking for many species. Here, we present the draft genome of Ophioderma brevispinum, an emerging model organism in the field of regenerative biology. This new genomic resource provides a reference for experimental studies of regenerative mechanisms. RESULTS: We report a de novo nuclear genome assembly for the brittle star O. brevispinum and annotation facilitated by the transcriptome assembly. The final assembly is 2.68 Gb in length and contains 146,703 predicted protein-coding gene models. We also report a mitochondrial genome for this species, which is 15,831 bp in length, and contains 13 protein-coding, 22 tRNAs, and 2 rRNAs genes, respectively. In addition, 29 genes of the Notch signaling pathway are identified to illustrate the practical utility of the assembly for studies of regeneration. CONCLUSIONS: The sequenced and annotated genome of O. brevispinum presented here provides the first such resource for an ophiuroid model species. Considering the remarkable regenerative capacity of this species, this genome will be an essential resource in future research efforts on molecular mechanisms regulating regeneration.


Assuntos
Equinodermos , Genoma Mitocondrial , Animais , Núcleo Celular , Equinodermos/genética , Anotação de Sequência Molecular , Regeneração/genética , Transcriptoma
3.
Artigo em Inglês | MEDLINE | ID: mdl-36619004

RESUMO

The identification and management of low parasitemia infections have become increasingly challenging for malaria control and elimination. Submicroscopic Plasmodium infections and G6PD deficiency among febrile patients require more sensitive diagnostic methods to improve detection and careful treatment regime of these infections. In Ethiopia, information on the low density submicroscopic malarial infections and frequency of G6PD deficiency (G6PDd) is scarce. In this study, 297 malaria suspected febrile patient samples were collected from health facilities of Bonga town in southwestern Ethiopia. The positivity rates of Plasmodium infection were determined by microscopy and quantitative PCR. G6PD activity level was determined by careSTART™ G6PD biosensor and the frequency of three common variants: G6PD*A (A376G), G6PD*A- (G202A) and Mediterranean (C563T) were investigated. G6PD gene sequencing was performed to detect mutations in exons 2-11 for both G6PD normal and deficient samples based on the phenotypic assay. More than twice Plasmodium infected samples was detected by qPCR (52/297; 17.4%) than microscopy (21/297; 7.0%). About 31 (10%) of the infections were submicroscopic. Bednet usage and age had a significant association with Plasmodium infection. Of the 271 participants who were tested for G6PD phenotype, 19 (7.0%) had low G6PD level. No mutations were observed in A376G, G202A, and C563T in the G6PDd samples, but three novel non-synonymous mutations in exon 2 including a C to T transition at position ChrX:6504 (Arg to Thr), G to T at ChrX:6369 (Ser to IIe), and G to C at ChrX:6664 (Gln to His) were detected. A high number of submicroscopic Plasmodium infections observed in this study pose a challenge for accurate and timely diagnosis, which could hinder malaria control efforts. G6PD deficiency in malaria patients pose danger when treating patients with primaquine. The three novel mutations detected in exon 2 of the G6PD gene merit further investigation on the hemolytic risk when exposed to oxidative antimalarials, their prevalence, and clinical significance.

4.
Cladistics ; 37(5): 461-488, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34570933

RESUMO

The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in humans in 2002. Despite reports showing Chiroptera as the original animal reservoir of SARS-CoV, many argue that Carnivora-hosted viruses are the most likely origin. The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 also involves Chiroptera-hosted lineages. However, factors such as the lack of comprehensive phylogenies hamper our understanding of host shifts once MERS-CoV emerged in humans and Artiodactyla. Since 2019, the origin of SARS-CoV-2, causative agent of coronavirus disease 2019 (COVID-19), added to this episodic history of zoonotic transmission events. Here we introduce a phylogenetic analysis of 2006 unique and complete genomes of different lineages of Orthocoronavirinae. We used gene annotations to align orthologous sequences for total evidence analysis under the parsimony optimality criterion. Deltacoronavirus and Gammacoronavirus were set as outgroups to understand spillovers of Alphacoronavirus and Betacoronavirus among ten orders of animals. We corroborated that Chiroptera-hosted viruses are the sister group of SARS-CoV, SARS-CoV-2 and MERS-related viruses. Other zoonotic events were qualified and quantified to provide a comprehensive picture of the risk of coronavirus emergence among humans. Finally, we used a 250 SARS-CoV-2 genomes dataset to elucidate the phylogenetic relationship between SARS-CoV-2 and Chiroptera-hosted coronaviruses.


Assuntos
Quirópteros/virologia , Interações Hospedeiro-Patógeno/fisiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Filogenia , SARS-CoV-2/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Animais , Genoma Viral , Humanos , Funções Verossimilhança , Pangolins/virologia , Recombinação Genética/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
J Infect Dis ; 224(8): 1422-1431, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33534886

RESUMO

Plasmodium vivax malaria was thought to be rare in Africa, but an increasing number of P. vivax cases reported across Africa and in Duffy-negative individuals challenges this dogma. The genetic characteristics of P. vivax in Duffy-negative infections, the transmission of P. vivax in East Africa, and the impact of environments on transmission remain largely unknown. This study examined genetic and transmission features of P. vivax from 107 Duffy-negative and 305 Duffy-positive individuals in Ethiopia and Sudan. No clear genetic differentiation was found in P. vivax between the 2 Duffy groups, indicating between-host transmission. P. vivax from Ethiopia and Sudan showed similar genetic clusters, except samples from Khartoum, possibly due to distance and road density that inhibited parasite gene flow. This study is the first to show that P. vivax can transmit to and from Duffy-negative individuals and provides critical insights into the spread of P. vivax in sub-Saharan Africa.


Assuntos
Sistema do Grupo Sanguíneo Duffy/sangue , Eritrócitos/parasitologia , Malária Vivax/sangue , Plasmodium vivax/isolamento & purificação , África Oriental/epidemiologia , Sistema do Grupo Sanguíneo Duffy/genética , Pool Gênico , Variação Genética , Humanos , Malária Vivax/epidemiologia , Malária Vivax/genética , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Receptores de Superfície Celular/genética , Sudão
6.
Artigo em Inglês | MEDLINE | ID: mdl-36168505

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic was one of the significant causes of death worldwide in 2020. The disease is caused by severe acute coronavirus syndrome (SARS) coronavirus 2 (SARS-CoV-2), an RNA virus of the subfamily Orthocoronavirinae related to 2 other clinically relevant coronaviruses, SARS-CoV and MERS-CoV. Like other coronaviruses and several other viruses, SARS-CoV-2 originated in bats. However, unlike other coronaviruses, SARS-CoV-2 resulted in a devastating pandemic. The SARS-CoV-2 pandemic rages on due to viral evolution that leads to more transmissible and immune evasive variants. Technology such as genomic sequencing has driven the shift from syndromic to molecular epidemiology and promises better understanding of variants. The COVID-19 pandemic has exposed critical impediments that must be addressed to develop the science of pandemics. Much of the progress is being applied in the developed world. However, barriers to the use of molecular epidemiology in low- and middle-income countries (LMICs) remain, including lack of logistics for equipment and reagents and lack of training in analysis. We review the molecular epidemiology literature to understand its origins from the SARS epidemic (2002-2003) through influenza events and the current COVID-19 pandemic. We advocate for improved genomic surveillance of SARS-CoV and understanding the pathogen diversity in potential zoonotic hosts. This work will require training in phylogenetic and high-performance computing to improve analyses of the origin and spread of pathogens. The overarching goals are to understand and abate zoonosis risk through interdisciplinary collaboration and lowering logistical barriers.

7.
Front Cell Infect Microbiol ; 11: 789417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096643

RESUMO

The unique biological features of Plasmodium vivax not only make it difficult to control but also to eliminate. For the transmission of the malaria parasite from infected human to the vector, gametocytes play a major role. The transmission potential of a malarial infection is inferred based on microscopic detection of gametocytes and molecular screening of genes in the female gametocytes. Microscopy-based detection methods could grossly underestimate the reservoirs of infection as gametocytes may occur as submicroscopic or as micro- or macro-gametocytes. The identification of genes that are highly expressed and polymorphic in male and female gametocytes is critical for monitoring changes not only in their relative proportions but also the composition of gametocyte clones contributing to transmission over time. Recent transcriptomic study revealed two distinct clusters of highly correlated genes expressed in the P. vivax gametocytes, indicating that the male and female terminal gametocytogeneses are independently regulated. However, the detective power of these genes is unclear. In this study, we compared genetic variations of 15 and 11 genes expressed, respectively, in the female and male gametocytes among P. vivax isolates from Southeast Asia, Africa, and South America. Further, we constructed phylogenetic trees to determine the resolution power and clustering patterns of gametocyte clones. As expected, Pvs25 (PVP01_0616100) and Pvs16 (PVP01_0305600) expressed in the female gametocytes were highly conserved in all geographical isolates. In contrast, genes including 6-cysteine protein Pvs230 (PVP01_0415800) and upregulated in late gametocytes ULG8 (PVP01_1452800) expressed in the female gametocytes, as well as two CPW-WPC family proteins (PVP01_1215900 and PVP01_1320100) expressed in the male gametocytes indicated considerably high nucleotide and haplotype diversity among isolates. Parasite samples expressed in male and female gametocyte genes were observed in separate phylogenetic clusters and likely represented distinct gametocyte clones. Compared to Pvs25, Pvs230 (PVP01_0415800) and a CPW-WPC family protein (PVP01_0904300) showed higher expression in a subset of Ethiopian P. vivax samples. Thus, Pvs230, ULG8, and CPW-WPC family proteins including PVP01_0904300, PVP01_1215900, and PVP01_1320100 could potentially be used as novel biomarkers for detecting both sexes of P. vivax gametocytes in low-density infections and estimating transmission reservoirs.


Assuntos
Malária Vivax , Plasmodium vivax , Biomarcadores , Humanos , Malária Vivax/prevenção & controle , Filogenia , Plasmodium vivax/genética , Polimorfismo Genético
8.
PLoS Negl Trop Dis ; 14(10): e0008234, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33044985

RESUMO

Plasmodium vivax malaria is much less common in Africa than the rest of the world because the parasite relies primarily on the Duffy antigen/chemokine receptor (DARC) to invade human erythrocytes, and the majority of Africans are Duffy negative. Recently, there has been a dramatic increase in the reporting of P. vivax cases in Africa, with a high number of them being in Duffy negative individuals, potentially indicating P. vivax has evolved an alternative invasion mechanism that can overcome Duffy negativity. Here, we analyzed single nucleotide polymorphism (SNP) and copy number variation (CNV) in Whole Genome Sequence (WGS) data from 44 P. vivax samples isolated from symptomatic malaria patients in southwestern Ethiopia, where both Duffy positive and Duffy negative individuals are found. A total of 123,711 SNPs were detected, of which 22.7% were nonsynonymous and 77.3% were synonymous mutations. The largest number of SNPs were detected on chromosomes 9 (24,007 SNPs; 19.4% of total) and 10 (16,852 SNPs, 13.6% of total). There were particularly high levels of polymorphism in erythrocyte binding gene candidates including merozoite surface protein 1 (MSP1) and merozoite surface protein 3 (MSP3.5, MSP3.85 and MSP3.9). Two genes, MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. Variation in gene copy number was also concentrated in genes involved in host-parasite interactions, including the expansion of the Duffy binding protein gene (PvDBP) on chromosome 6 and MSP3.11 on chromosome 10. Based on the phylogeny constructed from the whole genome sequences, the expansion of these genes was an independent process among the P. vivax lineages in Ethiopia. We further inferred transmission patterns of P. vivax infections among study sites and showed various levels of gene flow at a small geographical scale. The genomic features of P. vivax provided baseline data for future comparison with those in Duffy-negative individuals and allowed us to develop a panel of informative Single Nucleotide Polymorphic markers diagnostic at a micro-geographical scale.


Assuntos
Malária Vivax/parasitologia , Plasmodium vivax/genética , Sequenciamento Completo do Genoma , Antígenos de Protozoários/genética , Variações do Número de Cópias de DNA , DNA de Protozoário , Sistema do Grupo Sanguíneo Duffy/genética , Eritrócitos/parasitologia , Etiópia , Genoma de Protozoário , Humanos , Malária Vivax/genética , Filogenia , Plasmodium vivax/classificação , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética
9.
Viruses ; 12(8)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824044

RESUMO

Responding to the ongoing and severe public health threat of viruses of the family Flaviviridae, including dengue, hepatitis C, West Nile, yellow fever, and Zika, demands a greater understanding of how these viruses emerge and spread. Updated phylogenies are central to this understanding. Most cladograms of Flaviviridae focus on specific lineages and ignore outgroups, hampering the efficacy of the analysis to test ingroup monophyly and relationships. This is due to the lack of annotated Flaviviridae genomes, which has gene content variation among genera. This variation makes analysis without partitioning difficult. Therefore, we developed an annotation pipeline for the genera of Flaviviridae (Flavirirus, Hepacivirus, Pegivirus, and Pestivirus, named "Fast Loci Annotation of Viruses" (FLAVi; http://flavi-web.com/), that combines ab initio and homology-based strategies. FLAVi recovered 100% of the genes in Flavivirus and Hepacivirus genomes. In Pegivirus and Pestivirus, annotation efficiency was 100% except for one partition each. There were no false positives. The combined phylogenetic analysis of multiple genes made possible by annotation has clear impacts over the tree topology compared to phylogenies that we inferred without outgroups or data partitioning. The final tree is largely congruent with previous hypotheses and adds evidence supporting the close phylogenetic relationship between dengue and Zika.


Assuntos
Flaviviridae/genética , Genoma Viral , Anotação de Sequência Molecular , Filogenia , Biologia Computacional , Vírus da Dengue/genética , Evolução Molecular , Flavivirus/genética , Hepacivirus/genética , Pegivirus/genética , Pestivirus/genética , Software , Zika virus/genética
10.
PLoS Negl Trop Dis ; 13(9): e0007222, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31509523

RESUMO

Plasmodium vivax invasion of human erythrocytes depends on the Duffy Binding Protein (PvDBP) which interacts with the Duffy antigen. PvDBP copy number has been recently shown to vary between P. vivax isolates in Sub-Saharan Africa. However, the extent of PvDBP copy number variation, the type of PvDBP multiplications, as well as its significance across broad samples are still unclear. We determined the prevalence and type of PvDBP duplications, as well as PvDBP copy number variation among 178 Ethiopian P. vivax isolates using a PCR-based diagnostic method, a novel quantitative real-time PCR assay and whole genome sequencing. For the 145 symptomatic samples, PvDBP duplications were detected in 95 isolates, of which 81 had the Cambodian and 14 Malagasy-type PvDBP duplications. PvDBP varied from 1 to >4 copies. Isolates with multiple PvDBP copies were found to be higher in symptomatic than asymptomatic infections. For the 33 asymptomatic samples, PvDBP was detected with two copies in two of the isolates, and both were the Cambodian-type PvDBP duplication. PvDBP copy number in Duffy-negative heterozygotes was not significantly different from that in Duffy-positives, providing no support for the hypothesis that increased copy number is a specific association with Duffy-negativity, although the number of Duffy-negatives was small and further sampling is required to test this association thoroughly.


Assuntos
Antígenos de Protozoários/genética , Variações do Número de Cópias de DNA , Malária Vivax/epidemiologia , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Antígenos de Protozoários/sangue , Sistema do Grupo Sanguíneo Duffy/genética , Eritrócitos/imunologia , Eritrócitos/parasitologia , Etiópia/epidemiologia , Feminino , Genoma de Protozoário , Humanos , Malária Vivax/genética , Malária Vivax/parasitologia , Masculino , Proteínas de Protozoários/sangue , Receptores de Superfície Celular/sangue
11.
PeerJ ; 6: e5902, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479892

RESUMO

Scorpions have evolved a variety of toxins with a plethora of biological targets, but characterizing their evolution has been limited by the lack of a comprehensive phylogenetic hypothesis of scorpion relationships grounded in modern, genome-scale datasets. Disagreements over scorpion higher-level systematics have also incurred challenges to previous interpretations of venom families as ancestral or derived. To redress these gaps, we assessed the phylogenomic relationships of scorpions using the most comprehensive taxonomic sampling to date. We surveyed genomic resources for the incidence of calcins (a type of calcium channel toxin), which were previously known only from 16 scorpion species. Here, we show that calcins are diverse, but phylogenetically restricted only to parvorder Iurida, one of the two basal branches of scorpions. The other branch of scorpions, Buthida, bear the related LKTx toxins (absent in Iurida), but lack calcins entirely. Analysis of sequences and molecular models demonstrates remarkable phylogenetic inertia within both calcins and LKTx genes. These results provide the first synapomorphies (shared derived traits) for the recently redefined clades Buthida and Iurida, constituting the only known case of such traits defined from the morphology of molecules.

12.
PLoS One ; 13(11): e0202615, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485280

RESUMO

BACKGROUND: While overall rates of meningococcal disease have been declining in the United States for the past several decades, New York City (NYC) has experienced two serogroup C meningococcal disease outbreaks in 2005-2006 and in 2010-2013. The outbreaks were centered within drug use and sexual networks, were difficult to control, and required vaccine campaigns. METHODS: Whole Genome Sequencing (WGS) was used to analyze preserved meningococcal isolates collected before and during the two outbreaks. We integrated and analyzed epidemiologic, geographic, and genomic data to better understand transmission networks among patients. Betweenness centrality was used as a metric to understand the most important geographic nodes in the transmission networks. Comparative genomics was used to identify genes associated with the outbreaks. RESULTS: Neisseria meningitidis serogroup C (ST11/ET-37) was responsible for both outbreaks with each outbreak having distinct phylogenetic clusters. WGS did identify some misclassifications of isolates that were more distant from the outbreak strains, as well as those that should have been included based on high genomic similarity. Genomes for the second outbreak were more similar than the first and no polymorphism was found to either be unique or specific to either outbreak lineage. Betweenness centrality as applied to transmission networks based on phylogenetic analysis demonstrated that the outbreaks were transmitted within focal communities in NYC with few transmission events to other locations. CONCLUSIONS: Neisseria meningitidis is an ever changing pathogen and comparative genomic analyses can help elucidate how it spreads geographically to facilitate targeted interventions to interrupt transmission.


Assuntos
Surtos de Doenças , Infecções Meningocócicas/genética , Infecções Meningocócicas/mortalidade , Neisseria meningitidis Sorogrupo C/genética , Filogenia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Infecções Meningocócicas/epidemiologia , Pessoa de Meia-Idade , Neisseria meningitidis Sorogrupo C/patogenicidade , Cidade de Nova Iorque/epidemiologia
13.
Sci Rep ; 8(1): 10478, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29993044

RESUMO

Salmonella Enteritidis became the main serovar isolated from gastroenteritis cases in Brazil after the 90's. In this study we used whole genome sequence analysis to determine the phylogenetic relationships among a collection of strains isolated in Brazil to identify possible genomic differences between the strains isolated in the pre and post-epidemic period. Also, we compared our data from strains isolated in Brazil to strains available in the public domain from other South American countries. Illumina technology was used to sequence the genome of 256 Salmonella Enteritidis strains isolated over a 48 year-period in Brazil, comprising the pre- and post-epidemic period. Phylogenetic analyses revealed distinct lineages for strains isolated before and after 1994. Moreover, the phage region SE20 that may be related to the emergence of Salmonella Enteritidis worldwide was present only in strains of the post-epidemic cluster. In conclusion, our results showed that the genomic profile of Salmonella Enteritidis strains isolated in Brazil shifted after 1994, replaced by a global epidemic group of strains. It may be hypothesized that the presence of the prophage SE20 might have conferred to these strains a better ability to colonize chicken and consequently to infect and cause disease in humans, which might better explain the increase in the number of S. Enteritidis cases in Brazil and other South American countries. However, to verify this hypothesis further studies are needed.


Assuntos
Genômica , Polimorfismo de Nucleotídeo Único , Salmonella enteritidis/genética , Animais , Brasil , Galinhas , Epidemias/história , História do Século XX , História do Século XXI , Humanos , Filogenia , Prófagos/genética , Salmonella enteritidis/isolamento & purificação
14.
Am J Trop Med Hyg ; 98(1): 83-87, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141760

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked erythrocyte enzyme disorder with relevance to malaria treatment policy. Treatment with the antimalarial primaquine can result in hemolytic anemia in G6PD-deficient patients. With increased interest in primaquine use, it is important to identify G6PD variants in Ethiopia to inform malaria treatment policy. In the present study, mutations in the G6PD gene are identified in a sample of patients with malaria in Jimma town in southwest Ethiopia. Plasmodium species of infection were confirmed using polymerase chain reaction (PCR) and gel electrophoresis. PCR and Sanger sequencing were performed to observe a portion of the G6PD gene where the common G6PD mutations (A376G, G202A, and C563T) are found. Molecular analysis revealed that most of the samples were single Plasmodium vivax infections (83.7%). For G6PD genotyping, A376G was detected in 23.26% of individuals, whereas G202A and C563T were absent. Three other uncommon mutations were identified: rs782669677 (535G→A), rs370658483, (485 + 37 G→T), and a new mutation at chrX:154535443(C→T). Bioinformatic analysis of these mutations' potential functional impact suggests minimal effect on protein function. The discovery of both common and uncommon G6PD mutations contributes to the discussion on G6PD deficiency and appropriate primaquine treatment in Ethiopia.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/genética , Malária Falciparum/enzimologia , Malária Vivax/enzimologia , Polimorfismo de Nucleotídeo Único/genética , Etiópia/epidemiologia , Feminino , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/parasitologia , Humanos , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Vivax/complicações , Malária Vivax/epidemiologia , Malária Vivax/genética , Masculino , Reação em Cadeia da Polimerase , Fatores Sexuais
15.
Mol Phylogenet Evol ; 115: 161-170, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28757447

RESUMO

Multi-locus phylogenetic studies of echinoderms based on Sanger and RNA-seq technologies and the fossil record have provided evidence for the Asterozoa-Echinozoa hypothesis. This hypothesis posits a sister relationship between asterozoan classes (Asteroidea and Ophiuroidea) and a similar relationship between echinozoan classes (Echinoidea and Holothuroidea). Despite this consensus around Asterozoa-Echinozoa, phylogenetic relationships within the class Asteroidea (sea stars or starfish) have been controversial for over a century. Open questions include relationships within asteroids and the status of the enigmatic taxon Xyloplax. Xyloplax is thought by some to represent a newly discovered sixth class of echinoderms - and by others to be an asteroid. To address these questions, we applied a novel workflow to a large RNA-seq dataset that encompassed a broad taxonomic and genomic sample. This study included 15 species sampled from all extant orders and 13 families, plus four ophiuroid species as an outgroup. To expand the taxonomic coverage, the study also incorporated five previously published transcriptomes and one previously published expressed sequence tags (EST) dataset. We developed and applied methods that used a range of alignment parameters with increasing permissiveness in terms of gap characters present within an alignment. This procedure facilitated the selection of phylogenomic data subsets from large amounts of transcriptome data. The results included 19 nested data subsets that ranged from 37 to 4,281loci. Tree searches on all data subsets reconstructed Xyloplax as a velatid asteroid rather than a new class. This result implies that asteroid morphology remains labile well beyond the establishment of the body plan of the group. In the phylogenetic tree with the highest average asteroid nodal support several monophyletic groups were recovered. In this tree, Forcipulatida and Velatida are monophyletic and form a clade that includes Brisingida as sister to Forcipulatida. Xyloplax is consistently recovered as sister to Pteraster. Paxillosida and Spinulosida are each monophyletic, with Notomyotida as sister to the Paxillosida. Valvatida is recovered as paraphyletic. The results from other data subsets are largely consistent with these results. Our results support the hypothesis that the earliest divergence event among extant asteroids separated Velatida and Forcipulatacea from Valvatacea and Spinulosida.


Assuntos
Estrelas-do-Mar/classificação , Transcriptoma , Animais , Etiquetas de Sequências Expressas , Filogenia , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Estrelas-do-Mar/genética
16.
Cladistics ; 33(1): 1-20, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34724757

RESUMO

Zika virus was previously considered to cause only a benign infection in humans. Studies of recent outbreaks of Zika virus in the Pacific, South America, Mexico and the Caribbean have associated the virus with severe neuropathology. Viral evolution may be one factor contributing to an apparent change in Zika disease as it spread from Southeast Asia across the Pacific to the Americas. To address this possibility, we have employed computational tools to compare the phylogeny, geography, immunology and RNA structure of Zika virus isolates from Africa, Asia, the Pacific and the Americas. In doing so, we compare and contrast methods and results for tree search and rooting of Zika virus phylogenies. In some phylogenetic analyses we find support for the hypothesis that there is a deep common ancestor between African and Asian clades (the "Asia/Africa" hypothesis). In other phylogenetic analyses, we find that Asian lineages are descendent from African lineages (the "out of Africa" hypothesis). In addition, we identify and evaluate key mutations in viral envelope protein coding and untranslated terminal RNA regions. We find stepwise mutations that have altered both immunological motif sets and regulatory sequence elements. Both of these sets of changes distinguish viruses found in Africa from those in the emergent Asia-Pacific-Americas lineage. These findings support the working hypothesis that mutations acquired by Zika virus in the Pacific and Americas contribute to changes in pathology. These results can inform experiments required to elucidate the role of viral genetic evolution in changes in neuropathology, including microcephaly and other neurological and skeletomuscular issues in infants, and Guillain-Barré syndrome in adults.

17.
BMC Bioinformatics ; 17: 48, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26800861

RESUMO

BACKGROUND: One of our goals for the echinoderm tree of life project (http://echinotol.org) is to identify orthologs suitable for phylogenetic analysis from next-generation transcriptome data. The current dataset is the largest assembled for echinoderm phylogeny and transcriptomics. We used RNA-Seq to profile adult tissues from 42 echinoderm specimens from 24 orders and 37 families. In order to achieve sampling members of clades that span key evolutionary divergence, many of our exemplars were collected from deep and polar seas. DESCRIPTION: A small fraction of the transcriptome data we produced is being used for phylogenetic reconstruction. Thus to make a larger dataset available to researchers with a wide variety of interests, we made a web-based application, EchinoDB (http://echinodb.uncc.edu). EchinoDB is a repository of orthologous transcripts from echinoderms that is searchable via keywords and sequence similarity. CONCLUSIONS: From transcripts we identified 749,397 clusters of orthologous loci. We have developed the information technology to manage and search the loci their annotations with respect to the Sea Urchin (Strongylocentrotus purpuratus) genome. Several users have already taken advantage of these data for spin-off projects in developmental biology, gene family studies, and neuroscience. We hope others will search EchinoDB to discover datasets relevant to a variety of additional questions in comparative biology.


Assuntos
Bases de Dados Factuais , Ouriços-do-Mar/genética , Transcriptoma , Animais , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Ouriços-do-Mar/classificação
18.
Biochim Biophys Acta ; 1860(1 Pt A): 57-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26475641

RESUMO

BACKGROUND: Neuropeptides with an Amino Terminal Cu(II), Ni(II) Binding (ATCUN) motif (H2N-xxH) bind Cu(II)/Ni(II) ions. Here we report the novel discovery of a neuropeptide precursor that gives rise to a "cocktail" of peptides that bind Cu(II)/Ni(II) and form ternary complexes--the L-type SALMFamide precursor in the starfish Asterias rubens. METHODS: Echinoderm transcriptome sequence data were analysed to identify transcripts encoding precursors of SALMFamide-type neuropeptides. The sequence of the L-type SALMFamide precursor in the starfish Asterias rubens was confirmed by cDNA sequencing and peptides derived from this precursor (e.g. AYHSALPF-NH2, GYHSGLPF-NH2 and LHSALPF-NH2) were synthesized. The ability of these peptides to bind metals was investigated using UV/Vis, NMR, circular dichroism and EPR spectroscopy. RESULTS: AYHSALPF-NH2 and GYHSGLPF-NH2 bind Cu(II) and Ni(II) and generate metal-linked dimers to form ternary complexes with LHSALPF-NH2. Investigation of the evolutionary history of the histidine residue that confers these properties revealed that it can be traced to the common ancestor of echinoderms, which is estimated to have lived ~500 million years ago. However, L-type precursors comprising multiple SALMFamides with the histidine residue forming an ATCUN motif appears to be a feature that has evolved uniquely in starfish (Asteroidea). GENERAL SIGNIFICANCE: The discovery of a SALMFamide-type neuropeptide precursor protein that gives rise to a "cocktail" of peptides that bind metal ions and generate metal-linked dimers provides a new insight on ATCUN motif-containing neuropeptides. This property of L-type SALMFamides in the Asteroidea may be associated with a role in regulation of the unusual extra-oral feeding behaviour of starfish.


Assuntos
Cobre/química , Neuropeptídeos/química , Multimerização Proteica , Precursores de Proteínas/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Dados de Sequência Molecular , Estrelas-do-Mar
19.
PLoS Negl Trop Dis ; 9(7): e0003935, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230619

RESUMO

BACKGROUND: Schistosoma japonicum causes major public health problems in China and the Philippines; this parasite, which is transmitted by freshwater snails of the species Oncomelania hupensis, causes the disease intestinal schistosomiasis in humans and cattle. Researchers working on Schistosoma in Africa have described the relationship between the parasites and their snail intermediate hosts as coevolved or even as an evolutionary arms race. In the present study this hypothesis of coevolution is evaluated for S. japonicum and O. hupensis. The origins and radiation of the snails and the parasite across China, and the taxonomic validity of the sub-species of O. hupensis, are also assessed. METHODOLOGY/PRINCIPAL FINDINGS: The findings provide no evidence for coevolution between S. japonicum and O. hupensis, and the phylogeographical analysis suggests a heterochronous radiation of the parasites and snails in response to different palaeogeographical and climatic triggers. The results are consistent with a hypothesis of East to West colonisation of China by Oncomelania with a re-invasion of Japan by O. hupensis from China. The Taiwan population of S. japonicum appears to be recently established in comparison with mainland Chinese populations. CONCLUSIONS/SIGNIFICANCE: The snail and parasite populations of the western mountain region of China (Yunnan and Sichuan) appear to have been isolated from Southeast Asian populations since the Pleistocene; this has implications for road and rail links being constructed in the region, which will breach biogeographical barriers between China and Southeast Asia. The results also have implications for the spread of S. japonicum. In the absence of coevolution, the parasite may more readily colonise new snail populations to which it is not locally adapted, or even new intermediate host species; this can facilitate its dispersal into new areas. Additional work is required to assess further the risk of spread of S. japonicum.


Assuntos
Evolução Biológica , Filogenia , Schistosoma japonicum/isolamento & purificação , Esquistossomose/parasitologia , Caramujos/parasitologia , Animais , China , Humanos , Japão , Dados de Sequência Molecular , Filogeografia , Schistosoma japonicum/classificação , Schistosoma japonicum/genética , Schistosoma japonicum/fisiologia , Esquistossomose/transmissão , Caramujos/classificação , Caramujos/genética
20.
Comput Biol Med ; 58: 1-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25577610

RESUMO

BACKGROUND: Associations between genotype and phenotype provide insight into the evolution of pathogenesis, drug resistance, and the spread of pathogens between hosts. However, common ancestry can lead to apparent associations between biologically unrelated features. The novel method Cladograms with Path to Event (ClaPTE) detects associations between character-pairs (either a pair of mutations or a mutation paired with a phenotype) while adjusting for common ancestry, using phylogenetic trees. METHODS: ClaPTE tests for character-pairs changing close together on the phylogenetic tree, consistent with an associated character-pair. ClaPTE is compared to three existing methods (independent contrasts, mixed model, and likelihood ratio) to detect character-pair associations adjusted for common ancestry. Comparisons utilize simulations on gene trees for: HIV Env, HIV promoter, and bacterial DnaJ and GuaB; and case studies for Oseltamavir resistance in Influenza, and for DnaJ and GuaB. Simulated data include both true-positive/associated character-pairs, and true-negative/not-associated character-pairs, used to assess type I (frequency of p-values in true-negatives) and type II (sensitivity to true-positives) error control. RESULTS AND CONCLUSIONS: ClaPTE has competitive sensitivity and better type I error control than existing methods. In the Influenza/Oseltamavir case study, ClaPTE reports no new permissive mutations but detects associations between adjacent (in primary sequence) amino acid positions which other methods miss. In the DnaJ and GuaB case study, ClaPTE reports more frequent associations between positions both from the same protein family than between positions from different families, in contrast to other methods. In both case studies, the results from ClaPTE are biologically plausible.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Genéticos , Filogenia , Evolução Molecular , Genótipo , Vírus da Influenza A Subtipo H1N1/genética , Fenótipo , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...