Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Ecol Biogeogr ; 31(7): 1399-1421, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35915625

RESUMO

Aim: Understanding the variation in community composition and species abundances (i.e., ß-diversity) is at the heart of community ecology. A common approach to examine ß-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.

2.
Ecol Evol ; 8(5): 2453-2470, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29531667

RESUMO

Tephroseris longifolia agg. is a complex group of outcrossing perennials distributed throughout Central Europe. Recent morphological study revealed six morphotypes corresponding to five previously distinguished subspecies, together with Alpine and Pannonian morphotypes of T. longifolia subsp. longifolia. The delimited morphotypes differ in relative DNA content, geographical range, and rarity. We compared ecological niches of the six morphotypes in order to assess the impact of ecological differentiation on the speciation processes within the T. longifolia agg. Further, we examined whether morphotypes with small range are more ecologically specialized than their widespread relatives. The distribution area of the aggregate includes the Alps, Apennines, Carpathians, and the Pannonian Basin. Ecological variables linked to climate, topography, soil, and vegetation were gathered from 135 circular plots recorded in 35 localities. Related variables were grouped to describe the partial ecological niches: climatic, topographic, pedological, biotic, and coenotic (based either on vascular plants or on bryophytes), each of them visualized as an envelope in the two-dimensional nonmetric multidimensional scaling ordination space. Each partial ecological niche for a given morphotype was characterized by its position (location of the envelope centroid), breadth (surface of the envelope), and overlaps with envelopes of the other morphotypes. Mantel statistics based on Spearman correlation coefficients were used to quantify differentiation of morphotypes in ecological parameters represented by the partial ecological niches. The significant niche differentiation was confirmed for climatic, topographic, pedological, and vascular plant-based coenotic niches. Ecological niche differentiation corresponded well to morphological and partially also to karyological differentiation. Narrowly distributed morphotypes occupied more specific habitats and had narrower ecological niches than their widespread relatives. Ecological differentiation could be considered an important driver in allopatric speciation within the T. longifolia agg. Our results demonstrate that quantification of ecological divergence is helpful in assessing evolutionary history of closely related taxa.

3.
Appl Veg Sci ; 20(1): 143-158, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28356815

RESUMO

QUESTIONS: What are the main floristic patterns in the Pannonian and western Pontic steppe grasslands? What are the diagnostic species of the major subdivisions of the class Festuco-Brometea (temperate Euro-Siberian dry and semi-dry grasslands)? LOCATION: Carpathian Basin (E Austria, SE Czech Republic, Slovakia, Hungary, Romania, Slovenia, N Croatia and N Serbia), Ukraine, S Poland and the Bryansk region of W Russia. METHODS: We applied a geographically stratified resampling to a large set of relevés containing at least one indicator species of steppe grasslands. The resulting data set of 17 993 relevés was classified using the TWINSPAN algorithm. We identified groups of clusters that corresponded to the class Festuco-Brometea. After excluding relevés not belonging to our target class, we applied a consensus of three fidelity measures, also taking into account external knowledge, to establish the diagnostic species of the orders of the class. The original TWINSPAN divisions were revised on the basis of these diagnostic species. RESULTS: The TWINSPAN classification revealed soil moisture as the most important environmental factor. Eight out of 16 TWINSPAN groups corresponded to Festuco-Brometea. A total of 80, 32 and 58 species were accepted as diagnostic for the orders Brometalia erecti, Festucetalia valesiacae and Stipo-Festucetalia pallentis, respectively. In the further subdivision of the orders, soil conditions, geographic distribution and altitude could be identified as factors driving the major floristic patterns. CONCLUSIONS: We propose the following classification of the Festuco-Brometea in our study area: (1) Brometalia erecti (semi-dry grasslands) with Scabioso ochroleucae-Poion angustifoliae (steppe meadows of the forest zone of E Europe) and Cirsio-Brachypodion pinnati (meadow steppes on deep soils in the forest-steppe zone of E Central and E Europe); (2) Festucetalia valesiacae (grass steppes) with Festucion valesiacae (grass steppes on less developed soils in the forest-steppe zone of E Central and E Europe) and Stipion lessingianae (grass steppes in the steppe zone); (3) Stipo-Festucetalia pallentis (rocky steppes) with Asplenio septentrionalis-Festucion pallentis (rocky steppes on siliceous and intermediate soils), Bromo-Festucion pallentis (thermophilous rocky steppes on calcareous soils), Diantho-Seslerion (dealpine Sesleria caerulea grasslands of the Western Carpathians) and Seslerion rigidae (dealpine Sesleria rigida grasslands of the Romanian Carpathians).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...