Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121764, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981269

RESUMO

This study investigated the impact of climate change on flood susceptibility in six South Asian countries Afghanistan, Bangladesh, Bhutan, Bharat (India), Nepal, and Pakistan-under two distinct Shared Socioeconomic Pathway (SSP) scenarios: SSP1-2.6 and SSP5-5.8, for 2041-2060 and 2081-2100. To predict flood susceptibility, we employed three artificial intelligence (AI) algorithms: the K-nearest neighbor (KNN), conditional inference random forest (CIRF), and regularized random forest (RRF). Predictions were based on data from 2452 historical flood events, alongside climatic variables measured over monthly, seasonal, and annual timeframes. The innovative aspect of this research is the emphasis on using climatic variables across these progressively condensed timeframes, specifically addressing eight precipitation factors. The performance evaluation, employing the area under the receiver operating characteristic curve (AUC) metric, identified the RRF model as the most accurate, with the highest AUC of 0.94 during the testing phase, followed by the CIRF (AUC = 0.91) and the KNN (AUC = 0.86). An analysis of variable importance highlighted the substantial role of certain climatic factors, namely precipitation in the warmest quarter, annual precipitation, and precipitation during the wettest month, in the modeling of flood susceptibility in South Asia. The resultant flood susceptibility maps demonstrated the influence of climate change scenarios on susceptibility classifications, signalling a dynamic landscape of flood-prone areas over time. The findings revealed variable trends under different climate change scenarios and periods, with marked differences in the percentage of areas classified as having high and very high flood susceptibility. Overall, this study advances our understanding of how climate change affects flood susceptibility in South Asia and offers an essential tool for assessing and managing flood risks in the region.

2.
J Environ Manage ; 351: 119724, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061099

RESUMO

This study presents a comparative analysis of four Machine Learning (ML) models used to map wildfire susceptibility on Hawai'i Island, Hawai'i. Extreme Gradient Boosting (XGBoost) combined with three meta-heuristic algorithms - Whale Optimization (WOA), Black Widow Optimization (BWO), and Butterfly Optimization (BOA) - were employed to map areas susceptible to wildfire. To generate a wildfire inventory, 1408 wildfire points were identified within the study area from 2004 to 2022. The four ML models (XGBoost, WOA-XGBoost, BWO-XGBoost, and BOA-XGBoost) were run using 14 wildfire-conditioning factors categorized into four main groups: topographical, meteorological, vegetation, and anthropogenic. Six performance metrics - sensitivity, specificity, positive predictive values, negative predictive values, the Area Under the receiver operating characteristic Curve (AUC), and the average precision (AP) of Precision-Recall Curves (PRCs) - were used to compare the predictive performance of the ML models. The SHapley Additive exPlanations (SHAP) framework was also used to interpret the importance values of the 14 influential variables for the modeling of wildfire on Hawai'i Island using the four models. The results of the wildfire modeling indicated that all four models performed well, with the BWO-XGBoost model exhibiting a slightly higher prediction performance (AUC = 0.9269), followed by WOA-XGBoost (AUC = 0.9253), BOA-XGBoost (AUC = 0.9232), and XGBoost (AUC = 0.9164). SHAP analysis revealed that the distance from a road, annual temperature, and elevation were the most influential factors. The wildfire susceptibility maps generated in this study can be used by local authorities for wildfire management and fire suppression activity.


Assuntos
Incêndios Florestais , Havaí , Algoritmos , Aprendizado de Máquina , Meteorologia
3.
J Environ Manage ; 315: 115181, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500480

RESUMO

Complex interrelationships between landscape-level geoenvironmental factors and natural phenomena have rendered land degradation control measures ineffective. For control to be effective, this study argues that the interactions between different geoenvironmental factors and gully erosion (as an indicator of land degradation) should be more fully investigated and spatially mapped. To do so, gully locations of the Konduran watershed, Iran, were detected in the field and modeled in response to seventeen geoenvironmental factors using three machine learning methods, i.e., multivariate adaptive regression splines (MARS), random forest (RF), regularized random forest (RRF), and Bayesian generalized linear model (Bayesian GLM). The models' performance was validated, the relationship of gully occurrence with each factor was quantified, the probability of gully erosion (i.e., land degradation) was retrospectively estimated, and the spatially explicit maps of land degradation susceptibility were produced. Based on the area under the receiver operating characteristic curve (AUC), the RRF and MARS models with AUC = 0.98 achieved the greatest goodness-of-fit with the training dataset, whereas the RF model with AUC = 0.83 showed the greatest ability in predicting future gully occurrences. Further scrutinization using the sensitivity and specificity metrics demonstrated the efficiency of the RF model for correctly classifying the gully (sensitivity-training = 92%; sensitivity-validation = 90%) and non-gully (specificity-training = 95%; specificity-validation = 68%) pixels. Nearly 13% of the study area ended up being the hardest hit region due to their general characteristics of distance from roads and rives, altitude, and normalized difference vegetation index (NDVI) that were identified as the most influential factors in gully erosion occurrence. Given the resolution quality and reliable predictive accuracy, our spatially explicit maps of land susceptibility to gully erosion can be used by authorities and urban planners for identifying the target areas for rehabilitation and making more informed decisions for infrastructure development. Although our study was strictly focused on a certain region, our recommendations and implications are of global significance.


Assuntos
Altitude , Aprendizado de Máquina , Teorema de Bayes , Curva ROC , Estudos Retrospectivos
4.
Environ Sci Pollut Res Int ; 29(14): 20421-20436, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34735705

RESUMO

Nitrate is a major pollutant in groundwater whose main source is municipal wastewater and agricultural activities. In the present study, Bayesian approaches such as Bayesian generalized linear model (BGLM), Bayesian regularized neural network (BRNN), Bayesian additive regression tree (BART), and Bayesian ridge regression (BRR) were used to model groundwater nitrate contamination in a semiarid region Marvdasht watershed, Fars province, Iran. Eleven groundwater (GW) nitrate conditioning factors have been taken as input parameters for predictive modeling. The results showed that the Bayesian models used in this study were all competent to model groundwater nitrate and the BART model with R2 = 0.83 was more efficient than the other models. The result of variable importance showed that potassium (K) has the highest importance in the models followed by rainfall, altitude, groundwater depth, and distance from the residential area. The results of the study can support the decision-making process to control and reduce the sources of nitrate pollution.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Inteligência Artificial , Teorema de Bayes , Monitoramento Ambiental/métodos , Nitratos/análise , Poluentes Químicos da Água/análise
5.
J Environ Manage ; 298: 113551, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34435571

RESUMO

The predicts current and future flood risk in the Kalvan watershed of northwestern Markazi Province, Iran. To do this, 512 flood and non-flood locations were identified and mapped. Twenty flood-risk factors were selected to model flood risk using several machine learning techniques: conditional inference random forest (CIRF), the gradient boosting model (GBM), extreme gradient boosting (XGB) and their ensembles. To investigate the future (year 2050) effects of changing climates and changing land use on future flood risk, a general circulation model (GCM) with representative concentration pathways (RCPs) of the 2.6 and 8.5 scenarios by 2050 was tested for impacts on 8 precipitation variables. In addition, future land uses in 2050 was prepared using a CA-Markov model. The performances of the flood risk models were validated with Receiver Operating Characteristic-Area Under Curve (ROC-AUC) and other statistical analyses. The AUC value of the ROC curve indicates that the ensemble model had the highest predictive power (AUC = 0.83) and was followed by GBM (AUC = 0.80), XGB (AUC = 0.79), and CIRF (AUC = 0.78). The results of climate and land use changes on future flood-prone areas showed that the areas classified as having moderate to very high flood risk will increase by 2050. Due to the changes occurring with land uses and in climates, the area classified as moderate to very high risk increased in the predictions from all four models. The areal proportion classes of the risk zones in 2050 under the RCP 2.6 scenario using the ensemble model have changed of the following proportions from the current distribution Very Low = -12.04 %, Low = -8.56 %, Moderate = +1.56 %, High = +11.55 %, and Very High = +7.49 %. The RCP 8.5 scenario has caused the following changes from the present percentages: Very Low = -14.48 %, Low = -6.35 %, Moderate = +4.54 %, High = +10.61 %, and Very High = +5.67 %. The results of current and future flood risk mapping can aid planners and flood hazard managers in their efforts to mitigate impacts.


Assuntos
Inundações , Aprendizado de Máquina , Clima , Previsões , Curva ROC
6.
J Environ Manage ; 284: 112015, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33515838

RESUMO

The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities.


Assuntos
Conservação dos Recursos Naturais , Aprendizado Profundo , Humanos , Irã (Geográfico) , Aprendizado de Máquina , Solo
7.
Sensors (Basel) ; 20(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008132

RESUMO

This study aims to evaluate a new approach in modeling gully erosion susceptibility (GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed, Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil, lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared. A total of 132 gully erosion locations were identified during field visits. To implement the proposed model, the dataset was divided into the two categories of training (70%) and testing (30%). The results indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC) considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of the models are associated with optimal accuracy and have similar results to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and 0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased. Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be used as a novel and practical method to predict gully erosion susceptibility, which can help planners and managers to manage and reduce the risk of this phenomenon.

8.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053663

RESUMO

Prediction of the groundwater nitrate concentration is of utmost importance for pollution control and water resource management. This research aims to model the spatial groundwater nitrate concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network (Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall, piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K), and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also measured in 67 wells and used as a dependent variable for modeling. Data were divided into two categories of training (70%) and testing (30%) for modeling. The evaluation criteria coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24, NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74, RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results of groundwater nitrate concentration zoning in the study area showed that the northern parts of the case study have the highest amount of nitrate, which is higher in these agricultural areas than in other areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and penetrates groundwater and pollutes the aquifer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...