Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(11): 1360, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870654

RESUMO

Extensive water and chemicals are used in the textile industry processes. Therefore, treatment of textile wastewater is vital to protect the environment, maintain the public health, and recover resources. However, due to poor operation and plant performance the partially treated textile wastewater was directly discharged to a nearby river. Thus, the aim of this study was to characterize the wastewater physicochemical properties and evaluate the performance of the textile factory-activated sludge process wastewater treatment plant (WWTP) in Bahir Dar, Ethiopia. In inlet and outlet of the WWTP, samples were collected for 6 months and analyzed on-site and in a laboratory for parameters including, dissolved oxygen, pH, temperature, total Kjeldhal nitrogen (TKN), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS), total nitrogen (TN), total phosphorous (TP), nitrite, nitrate, and metallic compounds. The TSS, BOD5, COD, TP, nitrite, ammonia, and total chromium result were above the discharge limit with 73.2 mg/L, 48.45 mg/L, 144.08 mg/L, 7.9 mg/L, 1.36 mg/L, 1.96 mg/L, and 0.16 mg/L, respectively. Multiple regression models were developed for each overall, net moving average, and instantaneous effluent quality index (EQI). The predictor parameters BOD5, TN, COD, TSS, and TP (R2 = 0.995 to 1.000) estimated the net pollution loads of all predictors as 492.55 kg/day and 655.44 kg/day. Except TN, TKN, and NO3, the remaining six performance parameters were violating the permissible limit daily. Furthermore, the overall plant efficiency was predicted as 38 % and 42 % for the moving average and instantaneous EQI, respectively. Our study concluded that the integrated regression models and EQI can easily estimate the plant efficiency and daily possible pollution load.


Assuntos
Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos , Nitritos , Monitoramento Ambiental , Análise da Demanda Biológica de Oxigênio , Fósforo/análise , Nitrogênio/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-35162866

RESUMO

Water after sludge dewatering, also known as reject water from anaerobic digestion, is recycled back to the main wastewater treatment inlet in the wastewater treatment plant Porsgrunn, Norway, causing periodic process disturbance due to high ammonium of 568 (±76.7) mg/L and total chemical oxygen demand (tCOD) of 2825 (±526) mg/L. The main aim of this study was the simultaneous treatment of reject water ammonium and COD using two pilot-scale sequential moving bed biofilm reactors (MBBR) implemented in the main wastewater treatment stream. The two pilot MBBRs each had a working volume of 67.4 L. The biofilm carriers used had a protected surface area of 650 m2/m3 with a 60% filling ratio. The results indicate that the combined ammonia removal efficiency (ARE) in both reactors was 65.9%, while the nitrite accumulation rate (NAR) and nitrate production rate (NPR) were 80.2 and 19.8%, respectively. Over 28% of the reject water's tCOD was removed in both reactors. The heterotrophic nitrification and oxygen tolerant aerobic denitrification were the key biological mechanisms found for the ammonium removal in both reactors. The dominant bacterial family in both reactors was Alcaligenaceae, capable of simultaneous heterotrophic nitrification and denitrification. Moreover, microbial families that were found with equal potential for application of simultaneous heterotrophic nitrification and aerobic denitrification including Cloacamonaceae, Alcaligenaceae, Comamonadaceae, Microbacteriaceae, and Anaerolinaceae.


Assuntos
Nitrificação , Esgotos , Biofilmes , Reatores Biológicos/microbiologia , Desnitrificação , Humanos , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Água
3.
Artigo em Inglês | MEDLINE | ID: mdl-31717723

RESUMO

Several series of batch and continuous experiments were performed to investigate the removal of metformin and other contaminants from two wastewaters: wastewater I (WWI) containing 4 mg/L metformin and wastewater II (WWII) containing 110 g/L butanol. Biomethane potential (BMP) tests on WWII showed 77% of total chemical oxygen demand (tCOD = 110 g/L) degradability, and no apparent inhibition effects were observed. BMP tests on WWI showed an apparent inhibitory effect reflected in lower biogas production with increasing metformin concentration in the wastewater. Continuous flow hybrid vertical anaerobic biofilm (HyVAB®) experiments were consistent with the batch test findings. It was necessary to co-digest WWI (metformin) with WWII (easily degradable organics) to achieve complete metformin removal. After a period of adaptation, WWI and WWII co-digestion achieved up to 98% tCOD removal and 100% metformin removal. Most of the contaminants were removed in the anaerobic section of the HyVAB®, which implies that higher chemical oxygen demand (COD) loads than tested here are possible, given some optimization. The pilot reactor was able to manage organic loads of 11 g COD/d and above 10 mg/L metformin with a removal of 98% and 100% for tCOD and metformin, respectively.


Assuntos
Biofilmes , Reatores Biológicos , Hipoglicemiantes/isolamento & purificação , Metformina/isolamento & purificação , Águas Residuárias/química , Purificação da Água , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Eliminação de Resíduos Líquidos
4.
Water Sci Technol ; 78(5-6): 1249-1259, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30388081

RESUMO

The performance of a sludge blanket anaerobic baffled reactor was tested as an integrated treatment system for source-separated blackwater. The system consists of a stirred equalization tank, a buffer inlet tank, and two identical reactors, each with a working volume of 16.4 L, operated in parallel. Both reactors run at 3-days hydraulic retention time with different intermittent pulse feeding. Pulse lengths of 12 and 24 seconds per feed were set with respective rates of 114 L h-1 and 52 L h-1 for the short-pulse fed reactor (RI) and the long-pulse fed reactor (RII). Stable performance of the reactors was attained after 120 and 90 days, for RI and RII, respectively. After stable conditions attained, total chemical oxygen demand (COD) removal efficiency stabilized above 78%. Biogas production ranged from 0.52 to 1.16 L d-1 L-1 reactor volume, with 67-82% methane concentration and an average conversion of 0.69 ± 0.2 and 0.73 ± 0.2 g CH4-COD g-1CODin for RI and RII, respectively. The results imply that source-separated blackwater can be treated effectively in an anaerobic sludge blanket process on average loading rate of 2.3 ± 0.5 g COD d-1 L-1 reactor volume with high methane production potential and more than 80% removal of organic and particulate matter.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Bactérias Anaeróbias , Análise da Demanda Biológica de Oxigênio , Metano , Eliminação de Resíduos Líquidos
5.
Plant Physiol Biochem ; 90: 14-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25749731

RESUMO

Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting. The control regime may be optimised by monitoring plant responses, and may be promptly adjusted when plant performance is affected by extreme microclimatic conditions, such as high irradiance or temperature. To determine the stress indicators of plants based on their physiological responses, net photosynthesis (Pn) and four chlorophyll-a fluorescence parameters: maximum photochemical efficiency of PSII [Fv/Fm], electron transport rate [ETR], PSII operating efficiency [F'q/F'm], and non-photochemical quenching [NPQ] were assessed for potted chrysanthemum (Dendranthema grandiflora Tzvelev) 'Coral Charm' under different temperature (20, 24, 28, 32, 36 °C) and daily light integrals (DLI; 11, 20, 31, and 43 mol m(-2) created by a PAR of 171, 311, 485 and 667 µmol m(-2) s(-1) for 16 h). High irradiance (667 µmol m(-2) s(-1)) combined with high temperature (>32 °C) significantly (p < 0.05) decreased Fv/Fm. Under high irradiance, the maximum Pn and ETR were reached at 24 °C. Increased irradiance decreased the PSII operating efficiency and increased NPQ, while both high irradiance and temperature had a significant effect on the PSII operating efficiency at temperatures >28 °C. Under high irradiance and temperature, changes in the NPQ determined the PSII operating efficiency, with no major change in the fraction of open PSII centres (qL) (indicating a QA redox state). We conclude that 1) chrysanthemum plants cope with excess irradiance by non-radiative dissipation or a reversible stress response, with the effect on the Pn and quantum yield of PSII remaining low until the temperature reaches 28 °C and 2) the integration of online measurements to monitor photosynthesis and PSII operating efficiency may be used to optimise dynamic greenhouse control regimes by detecting plant stress caused by extreme microclimatic conditions.


Assuntos
Chrysanthemum/fisiologia , Transporte de Elétrons , Temperatura Alta , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Estresse Fisiológico , Clorofila/análogos & derivados , Clorofila/fisiologia , Clorofila A , Chrysanthemum/efeitos da radiação , Fluorescência
6.
Plant Physiol Biochem ; 67: 87-94, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23545206

RESUMO

Modern highly insulated greenhouses are more energy efficient than conventional types. Furthermore applying dynamic greenhouse climate control regimes will increase energy efficiency relatively more in modern structures. However, this combination may result in higher air and crop temperatures. Too high temperature affects the plant photosynthetic responses, resulting in a lower rate of photosynthesis. To predict and analyse physiological responses as stress indicators, two independent experiments were conducted, to detect the effect of high temperature on photosynthesis: analysing photosystem II (PSII) and stomatal conductance (gs). A combination of chlorophyll a fluorescence, gas exchange measurements and infrared thermography was applied using Chrysanthemum (Dendranthema grandiflora Tzvelev) 'Coral Charm' as a model species. Increasing temperature had a highly significant effect on PSII when the temperature exceeded 38 °C for a period of 7 (±1.8) days. High temperature decreased the maximum photochemical efficiency of PSII (Fv/Fm), the conformation term for primary photochemistry (Fv/Fo) and performance index (PI), as well as increased minimal fluorescence (Fo). However, at elevated CO2 of 1000 µmol mol(-1) and with a photosynthetic photon flux density (PPFD) of 800 µmol m(-2) s(-1), net photosynthesis (Pn) reached its maximum at 35 °C. The thermal index (IG), calculated from the leaf temperature and the temperature of a dry and wet reference leaf, showed a strong correlation with gs. We conclude that 1) chlorophyll a fluorescence and a combination of fluorescence parameters can be used as early stress indicators as well as to detect the temperature limit of PSII damage, and 2) the strong relation between gs and IG enables gs to be estimated non-invasively, which is an important first step in modelling leaf temperature to predict unfavourable growing conditions in a (dynamic) semi closed greenhouse.


Assuntos
Clorofila/metabolismo , Chrysanthemum/metabolismo , Temperatura Alta , Clorofila A , Chrysanthemum/fisiologia , Fluorescência , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...