Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 137: 105001, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301486

RESUMO

Amorphous solid dispersions (ASDs) represent an important formulation technique to achieve supersaturation in gastrointestinal fluids and to enhance absorption of poorly water-soluble drugs. Drug release from such systems is complex due to emergence of different colloidal structures and potential drug precipitation, which can occur in parallel to absorption. The latter drug uptake from the intestinal lumen can be simulated by an organic layer in a biphasic in vitro test, which was employed in this work to mechanistically study the release of ketoconazole from ASDs produced by hot melt extrusion using different HPMCAS grades. A particular aim was to introduce diffusing wave spectroscopy (DWS) to biopharmaceutical testing of solid dispersions. Results indicated that amorphous formulations prevented crystallization of the weakly basic drug upon transfer into the intestinal medium. Microrheological differences among polymer grades and plasticizers were revealed in the aqueous phase, which affected drug release and subsequently uptake into the organic layer. The results indicate that DWS can be employed as a new non-invasive tool to better understand drug release from solid dispersions. This novel light scattering technique is highly promising for future biopharmaceutical research on supersaturating systems such as solid dispersions.


Assuntos
Liberação Controlada de Fármacos , Cetoconazol/química , Metilcelulose/análogos & derivados , Análise Espectral/métodos , Metilcelulose/química , Reologia , Suspensões
2.
J Pharm Pharmacol ; 71(4): 483-509, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29770440

RESUMO

OBJECTIVES: Supersaturating formulations hold great promise for delivery of poorly soluble active pharmaceutical ingredients (APIs). To profit from supersaturating formulations, precipitation is hindered with precipitation inhibitors (PIs), maintaining drug concentrations for as long as possible. This review provides a brief overview of supersaturation and precipitation, focusing on precipitation inhibition. Trial-and-error PI selection will be examined alongside established PI screening techniques. Primarily, however, this review will focus on recent advances that utilise advanced analytical techniques to increase mechanistic understanding of PI action and systematic PI selection. KEY FINDINGS: Advances in mechanistic understanding have been made possible by the use of analytical tools such as spectroscopy, microscopy and mathematical and molecular modelling, which have been reviewed herein. Using these techniques, PI selection can be guided by molecular rationale. However, more work is required to see widespread application of such an approach for PI selection. SUMMARY: Precipitation inhibitors are becoming increasingly important in enabling formulations. Trial-and-error approaches have seen success thus far. However, it is essential to learn more about the mode of action of PIs if the most optimal formulations are to be realised. Robust analytical tools, and the knowledge of where and how they can be applied, will be essential in this endeavour.


Assuntos
Precipitação Química/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Humanos , Modelos Moleculares , Preparações Farmacêuticas/química , Solubilidade , Tecnologia Farmacêutica/métodos
3.
J Pharm Pharmacol ; 71(4): 464-482, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30070363

RESUMO

OBJECTIVES: This review highlights aspects of drug hydrophobicity and lipophilicity as determinants of different oral formulation approaches with specific focus on enabling formulation technologies. An overview is provided on appropriate formulation selection by focussing on the physicochemical properties of the drug. KEY FINDINGS: Crystal lattice energy and the octanol-water partitioning behaviour of a poorly soluble drug are conventionally viewed as characteristics of hydrophobicity and lipophilicity, which matter particularly for any dissolution process during manufacturing and regarding drug release in the gastrointestinal tract. Different oral formulation strategies are discussed in the present review, including lipid-based delivery, amorphous solid dispersions, mesoporous silica, nanosuspensions and cyclodextrin formulations. SUMMARY: Current literature suggests that selection of formulation approaches in pharmaceutics is still highly dependent on the availability of technological expertise in a company or research group. Encouraging is that, recent advancements point to more structured and scientifically based development approaches. More research is still needed to better link physicochemical drug properties to pharmaceutical formulation design.


Assuntos
Química Farmacêutica/métodos , Desenho de Fármacos , Preparações Farmacêuticas/administração & dosagem , Administração Oral , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Preparações Farmacêuticas/química , Solubilidade
4.
J Pharm Pharmacol ; 71(4): 441-463, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29978475

RESUMO

OBJECTIVES: Solubility parameters have been used for decades in various scientific fields including pharmaceutics. It is, however, still a field of active research both on a conceptual and experimental level. This work addresses the need to review solubility parameter applications in pharmaceutics of poorly water-soluble drugs. KEY FINDINGS: An overview of the different experimental and calculation methods to determine solubility parameters is provided, which covers from classical to modern approaches. In the pharmaceutical field, solubility parameters are primarily used to guide organic solvent selection, cocrystals and salt screening, lipid-based delivery, solid dispersions and nano- or microparticulate drug delivery systems. Solubility parameters have been applied for a quantitative assessment of mixtures, or they are simply used to rank excipients for a given drug. SUMMARY: In particular, partial solubility parameters hold great promise for aiding the development of poorly soluble drug delivery systems. This is particularly true in early-stage development, where compound availability and resources are limited. The experimental determination of solubility parameters has its merits despite being rather labour-intensive because further data can be used to continuously improve in silico predictions. Such improvements will ensure that solubility parameters will also in future guide scientists in finding suitable drug formulations.


Assuntos
Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Administração Oral , Desenvolvimento de Medicamentos/métodos , Excipientes/química , Humanos , Lipídeos/química , Tamanho da Partícula , Preparações Farmacêuticas/química , Solubilidade , Solventes/química , Água/química
5.
Int J Pharm ; 550(1-2): 130-139, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30130607

RESUMO

Solid dispersions (SDs) represent an important formulation technique to achieve supersaturation in gastro-intestinal fluids and to enhance absorption of poorly water-soluble drugs. Extensive research was leading to a rather good understanding of SDs in the dry state, whereas the complex interactions in aqueous medium are still challenging to analyze. This paper introduces a fluorescence quenching approach together with size-exclusion chromatography to study drug and polymer interactions that emerge from SDs release testing in aqueous colloidal phase. Celecoxib was used as a model drug as it is poorly water-soluble and also exhibits native fluorescence so that quenching experiments were enabled. Different pharmaceutical polymers were evaluated by the (modified) Stern-Volmer model, which was complemented by further bulk analytics. Drug accessibility by the quencher and its affinity to celecoxib were studied in physical mixtures as well as with in SDs. The obtained differences enabled important molecular insights into the different formulations. Knowledge of relevant drug-polymer interactions and the amount of drug embedded into polymer aggregates in the aqueous phase is of high relevance for understanding of SD performance. The novel fluorescence quenching approach is highly promising for future research and it can provide guidance in early formulation development of native fluorescent compounds.


Assuntos
Celecoxib/química , Química Farmacêutica , Espectrometria de Fluorescência , Química Farmacêutica/métodos , Coloides/química , Polímeros/química , Solubilidade , Espectrometria de Fluorescência/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...