Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968545

RESUMO

The molecular dynamics, thermal stability, and ionic conductivity were studied in the protic ionic liquid 1-methylimidazolium bis(trifluoromethylsulfonyl)imide ([MIm][TFSI]). The relaxation of the 1H spin-lattice of cations in the measured frequency range (10 kHz to 20 MHz) and temperature (298 to 343 K) is sensitive mainly to slow processes occurring in the molecular dynamics of protic ionic liquid and dominated by the contribution of intermolecular translational diffusion. Molecular rotations give only a constant contribution and become significant in the higher frequency range. An interesting feature is the observed enhancement of the 1H spin-lattice relaxation below 0.03 MHz attributed to the exchange of protons (order of 10-5 s) between imidazolium cations. The measurements of the self-diffusion coefficient of hydrogen atoms of cation from 298 to 343 K additionally confirm the observed phenomenon. The coefficient for exchangeable protons -NH is higher than for the cation. The nuclear magnetic resonance (NMR) experiments provide unambiguous evidence for proton transport decoupled from molecular diffusion of ions and support the conclusion that the charge transport mechanism in the studied PIL includes contributions from both the vehicular and Grotthus mechanisms. The protic ionic liquid is thermally stable to about 573 K as shown by thermogravimetric analysis and its electrical conductivity is 5 × 10-2 S/cm at 423 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...