Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1122063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033990

RESUMO

CD4+CD25highFoxP3+ regulatory T cells (Tregs) constitute a small but substantial fraction of lymphocytes in the immune system. Tregs control inflammation associated with infections but also when it is improperly directed against its tissues or cells. The ability of Tregs to suppress (inhibit) the immune system is possible due to direct interactions with other cells but also in a paracrine fashion via the secretion of suppressive compounds. Today, attempts are made to use Tregs to treat autoimmune diseases, allergies, and rejection after bone marrow or organ transplantation. There is strong evidence that the metabolic program of Tregs is connected with the phenotype and function of these cells. A modulation towards a particular metabolic stage of Tregs may improve or weaken cells' stability and function. This may be an essential tool to drive the immune system keeping it activated during infections or suppressed when autoimmunity occurs.


Assuntos
Doenças Autoimunes , Linfócitos T Reguladores , Humanos , Sistema Imunitário , Autoimunidade
2.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901896

RESUMO

Mild thiamine deficiency aggravates Zn accumulation in cholinergic neurons. It leads to the augmentation of Zn toxicity by its interaction with the enzymes of energy metabolism. Within this study, we tested the effect of Zn on microglial cells cultivated in a thiamine-deficient medium, containing 0.003 mmol/L of thiamine vs. 0.009 mmol/L in a control medium. In such conditions, a subtoxic 0.10 mmol/L Zn concentration caused non-significant alterations in the survival and energy metabolism of N9 microglial cells. Both activities of the tricarboxylic acid cycle and the acetyl-CoA level were not decreased in these culture conditions. Amprolium augmented thiamine pyrophosphate deficits in N9 cells. This led to an increase in the intracellular accumulation of free Zn and partially aggravated its toxicity. There was differential sensitivity of neuronal and glial cells to thiamine-deficiency-Zn-evoked toxicity. The co-culture of neuronal SN56 with microglial N9 cells reduced the thiamine-deficiency-Zn-evoked inhibition of acetyl-CoA metabolism and restored the viability of the former. The differential sensitivity of SN56 and N9 cells to borderline thiamine deficiency combined with marginal Zn excess may result from the strong inhibition of pyruvate dehydrogenase in neuronal cells and no inhibition of this enzyme in the glial ones. Therefore, ThDP supplementation can make any brain cell more resistant to Zn excess.


Assuntos
Microglia , Deficiência de Tiamina , Humanos , Microglia/metabolismo , Acetilcoenzima A/metabolismo , Deficiência de Tiamina/metabolismo , Neurônios Colinérgicos/metabolismo , Tiamina Pirofosfato/metabolismo , Colinérgicos/metabolismo , Zinco/metabolismo
3.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077475

RESUMO

The human brain is characterised by the most diverse morphological, metabolic and functional structure among all body tissues. This is due to the existence of diverse neurons secreting various neurotransmitters and mutually modulating their own activity through thousands of pre- and postsynaptic interconnections in each neuron. Astroglial, microglial and oligodendroglial cells and neurons reciprocally regulate the metabolism of key energy substrates, thereby exerting several neuroprotective, neurotoxic and regulatory effects on neuronal viability and neurotransmitter functions. Maintenance of the pool of mitochondrial acetyl-CoA derived from glycolytic glucose metabolism is a key factor for neuronal survival. Thus, acetyl-CoA is regarded as a direct energy precursor through the TCA cycle and respiratory chain, thereby affecting brain cell viability. It is also used for hundreds of acetylation reactions, including N-acetyl aspartate synthesis in neuronal mitochondria, acetylcholine synthesis in cholinergic neurons, as well as divergent acetylations of several proteins, peptides, histones and low-molecular-weight species in all cellular compartments. Therefore, acetyl-CoA should be considered as the central point of metabolism maintaining equilibrium between anabolic and catabolic pathways in the brain. This review presents data supporting this thesis.


Assuntos
Encéfalo , Neurônios Colinérgicos , Acetilcoenzima A/metabolismo , Acetilação , Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Neurônios Colinérgicos/metabolismo , Humanos , Mitocôndrias/metabolismo
4.
Nutrients ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458194

RESUMO

Chronic hyperglycemia contributes to vascular complications in diabetes. Resveratrol exerts anti-diabetic and anti-platelet action. This study aimed to evaluate the effects of resveratrol on metabolism and the function of blood platelets under static and in in vitro flow conditions in patients with type 2 diabetes. Blood obtained from 8 healthy volunteers and 10 patients with type 2 diabetes was incubated with resveratrol and perfused over collagen-coated capillaries. Isolated blood platelets were incubated with resveratrol and activated by collagen to assess platelet function, metabolism, ATP release, TXA2 production, lipid peroxidation, and gluthatione content. In the type 2 diabetes group, plasma glucose and fructosamine concentrations were significantly higher than in the healthy group. In in vitro studies, collagen-induced thrombi formation in the blood of diabetic patients was 33% higher than in the healthy group. Resveratrol reduced thrombi by over 50% in the blood of healthy and diabetic patients. TXA2 production was 47% higher in diabetic platelets than in the healthy group. Resveratrol reduced TXA2 release by 38% in healthy platelets and by 79% in diabetic platelets. Resveratrol also reduced the activities of enzymes responsible for glycolysis and oxidative metabolism in the platelets of both groups. These data indicate that the resveratrol-induced inhibition of platelet metabolism and TXA2 release may lead to a reduction of platelet function and thrombus formation in patients with type 2 diabetes. Therefore, resveratrol may be beneficial to prevent vascular complications as a future complementary treatment in aspirin-resistant diabetic patients.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Agregação Plaquetária , Resveratrol , Trombose , Plaquetas/metabolismo , Doenças Cardiovasculares/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Agregação Plaquetária/fisiologia , Resveratrol/metabolismo , Resveratrol/farmacologia , Trombose/metabolismo , Tromboxano A2
5.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948135

RESUMO

Brain pathologies evoked by thiamine deficiency can be aggravated by mild zinc excess. Cholinergic neurons are the most susceptible to such cytotoxic signals. Sub-toxic zinc excess aggravates the injury of neuronal SN56 cholinergic cells under mild thiamine deficiency. The excessive cell loss is caused by Zn interference with acetyl-CoA metabolism. The aim of this work was to investigate whether and how astroglial C6 cells alleviated the neurotoxicity of Zn to cultured SN56 cells in thiamine-deficient media. Low Zn concentrations did not affect astroglial C6 and primary glial cell viability in thiamine-deficient conditions. Additionally, parameters of energy metabolism were not significantly changed. Amprolium (a competitive inhibitor of thiamine uptake) augmented thiamine pyrophosphate deficits in cells, while co-treatment with Zn enhanced the toxic effect on acetyl-CoA metabolism. SN56 cholinergic neuronal cells were more susceptible to these combined insults than C6 and primary glial cells, which affected pyruvate dehydrogenase activity and the acetyl-CoA level. A co-culture of SN56 neurons with astroglial cells in thiamine-deficient medium eliminated Zn-evoked neuronal loss. These data indicate that astroglial cells protect neurons against Zn and thiamine deficiency neurotoxicity by preserving the acetyl-CoA level.


Assuntos
Neurônios Colinérgicos/metabolismo , Neuroglia/metabolismo , Deficiência de Tiamina/prevenção & controle , Zinco/toxicidade , Animais , Linhagem Celular Tumoral , Meios de Cultura , Camundongos , Tiamina/metabolismo , Tiamina/farmacologia , Deficiência de Tiamina/metabolismo
6.
Nutr Neurosci ; 24(6): 432-442, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31331253

RESUMO

Objectives: Zinc excitotoxicity and thiamine pyrophosphate deficiency (TD) are known pathogenic signals contributing to mechanism of different encephalopathies through inhibition of enzymes responsible for energy metabolism such as pyruvate dehydrogenase, aconitase or ketoglutarate dehydrogenase. The aim of this work was to investigate whether subclinical Zn excess and TD, frequent in aging brain, may combine yielding overt neuronal impairment.Results: Clonal SN56 cholinergic neuronal cells of septal origin were used as the model of brain cholinergic neurons, which are particularly susceptible to neurodegeneration in the course of Alzheimer's disease, hypoxia and other dementia-linked brain pathologies. Neither subtoxic concentration of Zn (0.10 mM) nor mild 20-25% TD deficits alone caused significant negative changes in cultured cholinergic neurons viability and their acetyl-CoA/acetylcholine metabolism. However, cells with mild TD accumulated Zn in excess, which impaired their energy metabolism causing a loss of neurons viability and their function as neurotransmitters. These negative effects of Zn were aggravated by amprolium which is an inhibitor of thiamine intracellular transport.Conclusion: Our data indicate that TD may amplify otherwise non-harmful border-line Zn excitotoxic signals yielding progress of neurodegeneration.


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Deficiência de Tiamina/metabolismo , Zinco/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos
7.
Front Cell Neurosci ; 12: 169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050410

RESUMO

Brain neurons, to support their neurotransmitter functions, require a several times higher supply of glucose than non-excitable cells. Pyruvate, the end product of glycolysis, through pyruvate dehydrogenase complex reaction, is a principal source of acetyl-CoA, which is a direct energy substrate in all brain cells. Several neurodegenerative conditions result in the inhibition of pyruvate dehydrogenase and decrease of acetyl-CoA synthesis in mitochondria. This attenuates metabolic flux through TCA in the mitochondria, yielding energy deficits and inhibition of diverse synthetic acetylation reactions in all neuronal sub-compartments. The acetyl-CoA concentrations in neuronal mitochondrial and cytoplasmic compartments are in the range of 10 and 7 µmol/L, respectively. They appear to be from 2 to 20 times lower than acetyl-CoA Km values for carnitine acetyltransferase, acetyl-CoA carboxylase, aspartate acetyltransferase, choline acetyltransferase, sphingosine kinase 1 acetyltransferase, acetyl-CoA hydrolase, and acetyl-CoA acetyltransferase, respectively. Therefore, alterations in acetyl-CoA levels alone may significantly change the rates of metabolic fluxes through multiple acetylation reactions in brain cells in different physiologic and pathologic conditions. Such substrate-dependent alterations in cytoplasmic, endoplasmic reticulum or nuclear acetylations may directly affect ACh synthesis, protein acetylations, and gene expression. Thereby, acetyl-CoA may regulate the functional and adaptative properties of neuronal and non-neuronal brain cells. The excitotoxicity-evoked intracellular zinc excess hits several intracellular targets, yielding the collapse of energy balance and impairment of the functional and structural integrity of postsynaptic cholinergic neurons. Acute disruption of brain energy homeostasis activates slow accumulation of amyloid-ß1-42 (Aß). Extra and intracellular oligomeric deposits of Aß affect diverse transporting and signaling pathways in neuronal cells. It may combine with multiple neurotoxic signals, aggravating their detrimental effects on neuronal cells. This review presents evidences that changes of intraneuronal levels and compartmentation of acetyl-CoA may contribute significantly to neurotoxic pathomechanisms of different neurodegenerative brain disorders.

8.
J Alzheimers Dis ; 48(4): 1083-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402099

RESUMO

The pyruvate-derived acetyl-CoA is a principal direct precursor substrate for bulk energy synthesis in the brain. Deficits of pyruvate dehydrogenase in the neocortex are common features of Alzheimer's disease and other age-related encephalopathies in humans. Therefore, amyloid-ß overload in brains of diverse transgenic Alzheimer's disease model animals was investigated as one of neurotoxic compounds responsible for pyruvate dehydrogenase inhibition yielding deficits of cholinergic neurotransmission and cognitive functions. Brains of aged, 14-16-month-old Tg2576 mice contained 0.6 µmol/kg levels of amyloid-ß1 - 42. Activities of pyruvate dehydrogenase complex, choline acetyltransferase, and several enzymes of acetyl-CoA and energy metabolism were found to be unchanged in both forebrain mitochondria and synaptosomes of Tg2576 mice, indicating preservation of structural integrity at least in cholinergic neuronal cells. However, in transgenic brain synaptosomes, pyruvate utilization, mitochondrial levels, and cytoplasmic acetyl-CoA levels, as well as acetylcholine content and its quantal release, were all found to be decreased by 25-40% . On the contrary, activation of pyruvate utilization was detected and no alterations in acetyl-CoA content and citrate or α-ketoglutarate accumulation were observed in transgenic whole brain mitochondria. These data indicate that amyloid-ß evoked deficits in acetyl-CoA are confined to mitochondrial and cytoplasmic compartments of Tg2576 nerve terminals, becoming early primary signals paving the path for further stages of neurodegeneration. On the other hand, acetyl-CoA synthesis in mitochondrial compartments of glial cells seems to be activated despite amyloid-ß accumulated in transgenic brains.


Assuntos
Acetilcoenzima A/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Acetilcolina/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Ácido Cítrico/metabolismo , Citoplasma/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Ácidos Cetoglutáricos/metabolismo , Masculino , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mutação , Neuroglia/patologia , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Ácido Pirúvico/metabolismo , Sinaptossomos/metabolismo
9.
Expert Rev Neurother ; 15(3): 239-49, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25683350

RESUMO

Retinoic acid is a potent cell differentiating factor, which through its nuclear receptors affects a vast range of promoter sites in brain neuronal and glial cells in every step of embryonic and postnatal life. Its capacities, facilitating maturation of neurotransmitter phenotype in different groups of neurons, pave the way for its application as a potential therapeutic agent in neurodegenerative diseases including Alzheimer's disease. Retinoic acid was found to exert particularly strong enhancing effects on acetylcholine transmitter functions in brain cholinergic neurons, loss of which is tightly linked to the development of cognitive and memory deficits in course of different cholinergic encephalopathies. Here, we review cholinotrophic properties of retinoic acid and its derivatives, which may justify their application in the management of Alzheimer's disease and the related neurodegenerative conditions.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Tretinoína/uso terapêutico , Doença de Alzheimer/patologia , Encéfalo/patologia , Neurônios Colinérgicos/patologia , Humanos , Resultado do Tratamento , Tretinoína/farmacologia
10.
Neurochem Res ; 38(8): 1523-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23677775

RESUMO

Glucose-derived pyruvate is a principal source of acetyl-CoA in all brain cells, through pyruvate dehydogenase complex (PDHC) reaction. Cholinergic neurons like neurons of other transmitter systems and glial cells, utilize acetyl-CoA for energy production in mitochondria and diverse synthetic pathways in their extramitochondrial compartments. However, cholinergic neurons require additional amounts of acetyl-CoA for acetylcholine synthesis in their cytoplasmic compartment to maintain their transmitter functions. Characteristic feature of several neurodegenerating diseases including Alzheimer's disease and thiamine diphosphate deficiency encephalopathy is the decrease of PDHC activity correlating with cholinergic deficits and losses of cognitive functions. Such conditions generate acetyl-CoA deficits that are deeper in cholinergic neurons than in noncholinergic neuronal and glial cells, due to its additional consumption in the transmitter synthesis. Therefore, any neuropathologic conditions are likely to be more harmful for the cholinergic neurons than for noncholinergic ones. For this reason attempts preserving proper supply of acetyl-CoA in the diseased brain, should attenuate high susceptibility of cholinergic neurons to diverse neurodegenerative conditions. This review describes how common neurodegenerative signals could induce deficts in cholinergic neurotransmission through suppression of acetyl-CoA metabolism in the cholinergic neurons.


Assuntos
Acetilcoenzima A/fisiologia , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Doenças Neurodegenerativas/patologia , Receptores Colinérgicos/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Humanos
11.
Neurochem Int ; 57(7): 851-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20850489

RESUMO

Several pathologic conditions are known to cause thiamine deficiency, which induce energy shortages in all tissues, due to impairment of pyruvate decarboxylation. Brain is particularly susceptible to these conditions due to its high rate of glucose to pyruvate-driven energy metabolism. However, cellular compartmentalization of a key energy metabolite, acetyl-CoA, in this pathology remains unknown. Pyrithiamine-evoked thiamine deficiency caused no significant alteration in pyruvate dehydrogenase and 30% inhibition of α-ketoglutarate dehydrogenase activities in rat whole forebrain mitochondria. It also caused 50% reduction of the metabolic flux of pyruvate through pyruvate dehydrogenase, 78% inhibition of its flux through α-ketoglutarate dehydrogenase steps, and nearly 60% decrease of intramitochondrial acetyl-CoA content, irrespective of the metabolic state. State 3 caused a decrease in citrate and an increase in α-ketoglutarate accumulation. These alterations were more evident in thiamine-deficient mitochondria. Simultaneously thiamine deficiency caused no alteration of relative, state 3-induced increases in metabolic fluxes through pyruvate and α-ketoglutarate dehydrogenase steps. These data indicate that a shortage of acetyl-CoA in the mitochondrial compartment may be a primary signal inducing impairment of neuronal and glial cell functions and viability in the thiamine-deficient brain.


Assuntos
Acetilcoenzima A/deficiência , Encéfalo/enzimologia , Mitocôndrias/enzimologia , Deficiência de Tiamina/enzimologia , Encefalopatia de Wernicke/enzimologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Ativação Enzimática/fisiologia , Humanos , Masculino , Ratos , Ratos Wistar , Deficiência de Tiamina/patologia , Encefalopatia de Wernicke/patologia
12.
J Neurochem ; 115(2): 333-42, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20649840

RESUMO

The decrease of pyruvate and ketoglutarate dehydrogenase complex activities is the main cause of energy and acetyl-CoA deficits in thiamine deficiency-evoked cholinergic encephalopathies. However, disturbances in pathways of acetyl-CoA metabolism leading to appearance of cholinergic deficits remain unknown. Therefore, the aim of this work was to investigate alterations in concentration and distribution of acetyl-CoA and in acetylcholine metabolism in brain nerve terminals, caused by thiamine deficits. They were induced by the pyrithiamine, a potent inhibitor of thiamine pyrophosphokinase. The thiamine deficit reduced metabolic fluxes through pyruvate and ketoglutarate dehydrogenase steps, yielding deficits of acetyl-CoA in mitochondrial and cytoplasmic compartments of K-depolarized nerve terminals. It also inhibited indirect transport of acetyl-CoA though ATP-citrate lyase pathway being without effect on its direct Ca-dependent transport to synaptoplasm. Resulting suppression of synaptoplasmic acetyl-CoA correlated with inhibition of quantal acetylcholine release (r = 0.91, p = 0.012). On the other hand, thiamine deficiency activated non-quantal acetylcholine release that was independent of shifts in intraterminal distribution of acetyl-CoA. Choline acetyltransferase activity was not changed by these conditions. These data indicate that divergent alterations in the release of non-quantal and quantal acetylcholine pools from thiamine deficient nerve terminals could be caused by the inhibition of acetyl-CoA and citrate synthesis in their mitochondria. They in turn, caused inhibition of acetyl-CoA transport to the synaptoplasmic compartment through ATP-citrate lyase pathway yielding deficits of cholinergic functions.


Assuntos
Acetilcoenzima A/metabolismo , Acetilcolina/metabolismo , Encéfalo/ultraestrutura , Terminações Nervosas/metabolismo , Deficiência de Tiamina/patologia , Animais , Encéfalo/metabolismo , Ácido Cítrico/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Cetona Oxirredutases/metabolismo , Ácido Láctico/metabolismo , Masculino , Modelos Biológicos , Terminações Nervosas/ultraestrutura , Piritiamina/efeitos adversos , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar , Sinaptossomos/metabolismo , Deficiência de Tiamina/etiologia
13.
Neurochem Int ; 56(1): 143-51, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19781588

RESUMO

Excessive accumulation of zinc in the brain is one of putative factors involved in pathomechanism of cholinergic encephalopathies. The aim of this work was to investigate whether short-term increase of zinc concentration in the extracellular space may affect energy and acetylcholine metabolism in SN56 cholinergic cells of septal origin. Short 30 min exposition of SN56 cells to increasing zinc levels caused greater loss of viability of differentiated (DC, [EC(0.4)] 0.09 mM) than nondifferentiated cells (NC, [EC(0.4)] 0.14 mM). Concentration-dependent accumulation of zinc displayed exponential non-saturable kinetics. Zinc accumulation caused the decrease of calcium accumulation in mitochondria and its increase in cytoplasmic compartment of SN56 cells. Significant inverse and direct correlations were found between zinc accumulation and calcium levels in mitochondrial (r=-0.96, p=0.028) and cytoplasmic (r=0.97, p=0.028) compartments of DC, respectively. Zinc exerted similar inhibition of pyruvate dehydrogenase, aconitase and isocitrate dehydrogenase both in NC and DC homogenates, at Ki values equal to about 0.07, 0.08 and 0.005 mM, respectively. On the other hand, ketoglutarate dehydrogenase activity in DC was inhibited by zinc (Ki 0.0005 mM) 8 times stronger that in NC (Ki 0.004 mM). Also zinc-evoked decreases in acetylcholine content and its release were significantly greater in DC than in NC. Same conditions caused suppression of cytoplasmic and mitochondrial content of acetyl-CoA, that positively correlated with inhibition of transmitter functions (r=0.995, p=005) and loss of cell viability (r=0.990, p=0.0006), respectively. Significant correlations were also found in zinc-challenged cells between pyruvate dehydrogenase activity and both mitochondrial acetyl-CoA content and cell viability. These data indicate that pyruvate dehydrogenase-dependent acetyl-CoA synthesis in neuronal mitochondria may be a primary target for short-term neurotoxic effects of zinc. In consequence, shortages of acetyl-CoA in the mitochondrial compartment would cause fast loss of functional and structural integrity of cholinergic neurons.


Assuntos
Acetilcoenzima A/biossíntese , Acetilcolina/metabolismo , Fibras Colinérgicas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Zinco/toxicidade , Aconitato Hidratase/efeitos dos fármacos , Aconitato Hidratase/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Fibras Colinérgicas/metabolismo , Relação Dose-Resposta a Droga , Metabolismo Energético/fisiologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/fisiologia , Isocitrato Desidrogenase/efeitos dos fármacos , Isocitrato Desidrogenase/metabolismo , Cinética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurotoxinas/toxicidade , Complexo Piruvato Desidrogenase/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Fatores de Tempo
14.
Acta Neurobiol Exp (Wars) ; 68(4): 453-62, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19112468

RESUMO

Age-dependent accumulation of lead in brain has been implicated in the pathomechanisms of Alzheimer's disease. The aim of this work was to investigate whether cholinotoxic effects of lead may result from alterations in acetyl-CoA metabolism. One day exposure of differentiated SN56 cholinergic neuroblastoma cells to 0.5 micromol/L lead or 0.01 mmol/L amyloid-beta1-42, increased fraction of nonviable cells to about 2%. Suppression of choline acetyltransferase activity occurred only in the presence of fresh amyloid-beta1-42, whereas lead was ineffective. All agents in combination caused suppression of acetyl-CoA in cytoplasm and mitochondria down to 19% and 34% of controls, respectively. Inverse correlation was observed between whole cell acetyl-CoA level and fraction of nonviable cells at different combinations of lead and other neurotoxic compounds. It indicates that lead had no primary suppressive effect on cholinergic phenotype but, at least in part, exerted cytotoxic influence on cholinergic neurons through the decrease of their acetyl-CoA.


Assuntos
Intoxicação do Sistema Nervoso por Chumbo/patologia , Sistema Nervoso Parassimpático/patologia , Acetilcoenzima A/metabolismo , Peptídeos beta-Amiloides/toxicidade , Neoplasias Encefálicas/patologia , Contagem de Células , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Chumbo/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/patologia , Azul Tripano
15.
Diabetes ; 56(2): 462-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17259392

RESUMO

Increased activity of blood platelets contributes to vascular complications in patients with diabetes. The aim of this work was to investigate whether persisting hyperglycemia in diabetic patients generates excessive accumulation of ATP/ADP, which may underlie platelet hyperactivity. Platelet ATP and ADP levels, thiobarbituric acid-reactive species synthesis, and aggregation of platelets from patients with diabetes were 18-82% higher than in platelets from healthy participants. In patients with diabetes, platelet stimulation with thrombin caused about two times greater release of ATP and ADP than in the healthy group while decreasing intraplatelet nucleotide content to similar levels in both groups. This indicates that the increased content of adenylate nucleotides in the releasable pool in the platelets of diabetic patients does not affect their level in metabolic cytoplasmic/mitochondrial compartments. Significant correlations between platelet ATP levels and plasma fructosamine, as well as between platelet ATP/ADP and platelet activities, have been found in diabetic patients. In conclusion, chronic hyperglycemia-evoked elevations of ATP/ADP levels and release from blood platelets of patients with diabetes may be important factors underlying platelet hyperactivity in the course of the disease.


Assuntos
Difosfato de Adenosina/sangue , Trifosfato de Adenosina/sangue , Plaquetas/metabolismo , Diabetes Mellitus/sangue , Hiperglicemia/sangue , Aminoácidos/farmacologia , Plaquetas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Agregação Plaquetária/efeitos dos fármacos , Suramina/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Trombina/farmacologia
16.
Neurochem Int ; 47(7): 466-73, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16122837

RESUMO

Amyloid-beta accumulation in brains of Alzheimer's disease (AD) victims is accompanied by glial inflammatory reactions and preferential loss of cholinergic neurons. Therefore, the aim of this study was to find out whether proinflamatory cytokine interleukin 1beta (IL1beta) modifies effects of amyloid-beta (Abeta) on viability and cholinergic phenotype of septum derived T17 cholinergic neuroblastoma cells. In nondifferentiated T17 cells (NC) Abeta(25-35) (1 microg/ml) caused no changes in choline acetyltransferase (ChAT) activity, acetylcholine (ACh) release, subcellular distribution of acetyl-CoA, but doubled content of trypan blue positive cells. IL1beta (10 ng/ml) increased ACh release (125%) but did not change other parameters of NC. In the presence of Abeta IL1beta also increased ChAT activity (47%), ACh release (100%) but had no effect on acetyl-CoA distribution and cell viability. Differentiation with retinoic acid and dibutyryl cyclic AMP caused over two-fold increase of ChAT activity and ACh content, four-fold increase of ACh release and about 50% decrease of acetyl-CoA level in the mitochondria. In differentiated cells (DC), Abeta decreased ChAT activity (31%), ACh release (47%) and content of acetyl-CoA (80%) in cell cytoplasmic compartment, whereas IL1beta elevated ChAT activity (54%) and ACh release (32%). IL1beta totally reversed Abeta-evoked inhibition of ChAT activity and ACh release and restored control level of cytoplasmic acetyl-CoA but increased fraction of nonviable cells to 25%. Thus, IL1beta could compensate Abeta-evoked cholinergic deficits through the restoration of adequate expression of ChAT and provision of acetyl-CoA to cytoplasmic compartment in cholinergic neurons that survive under such pathologic conditions. These data indicate that IL1beta possess independent cholinotrophic and cholinotoxic activities that may modify Abeta effects on cholinergic neurons.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Neoplasias Encefálicas/metabolismo , Interleucina-1/farmacologia , Neuroblastoma/metabolismo , Sistema Nervoso Parassimpático/efeitos dos fármacos , Acetilcoenzima A/metabolismo , Acetilcolina/metabolismo , Animais , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corantes , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Sistema Nervoso Parassimpático/enzimologia , Fenótipo , Ratos , Azul Tripano
17.
Clin Chem ; 51(9): 1673-82, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16020499

RESUMO

BACKGROUND: Excessive blood platelet activity contributes to vascular complications in diabetic persons. Increased acetyl-CoA in platelets from diabetic persons has been suggested to be a cause of this hyperactivity. We therefore investigated whether L-carnitine, which up-regulates metabolism of acetyl-CoA in muscles and brain, may affect platelet function in healthy and diabetic individuals. METHODS: We obtained platelets from healthy and diabetic persons and measured acetyl-CoA concentrations, malonyl dialdehyde (MDA) synthesis, and platelet aggregation in the absence and presence of L-carnitine. Activities of selected enzymes involved in glucose and acetyl-CoA metabolism were also assessed. RESULTS: Fasting glucose, fructosamine, and hemoglobin A1c were present in significantly higher amounts in the blood of diabetic patients than in healthy individuals. Activities of carnitine acetyltransferase, glucose-6-phosphate dehydrogenase, oxoglutarate dehydrogenase, and fatty acid synthase were 17%-62% higher in platelets from diabetic patients. Mitochondrial acetyl-CoA was increased by 98% in platelets from diabetic patients, MDA synthesis was increased by 73%, and platelet aggregation by 60%. L-Carnitine had no or only a slight effect on these indices in platelets from healthy individuals, but in platelets from diabetic patients, L-carnitine caused a 99% increase in acetyl-CoA in the cytoplasmic compartment along with increases in MDA synthesis and platelet aggregation. CONCLUSIONS: Excessive platelet activity in persons with diabetes may result from increased acetyl-CoA, which apparently increases synthesis of lipid activators of platelet function. L-Carnitine may aggravate platelet hyperactivity in diabetic persons by increasing the provision of surplus acetyl-CoA to the cytoplasmic compartment.


Assuntos
Acetilcoenzima A/sangue , Plaquetas/metabolismo , Carnitina/sangue , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Agregação Plaquetária , Adulto , Plaquetas/ultraestrutura , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...