Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 319: 111239, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487652

RESUMO

Elicitins are proteinaceous elicitors that induce the hypersensitive response and plant resistance against diverse phytopathogens. Elicitin recognition by membrane receptors or high-affinity sites activates a variety of fast responses including the production of reactive oxygen species (ROS) and nitric oxide (NO), leading to induction of plant defense genes. Beta-cryptogein (CRY) is a basic ß-elicitin secreted by the oomycete Phytophthora cryptogea that shows high necrotic activity in some plant species, whereas infestin 1 (INF1) secreted by the oomycete P. infestans belongs to acidic α-elicitins with a significantly weaker capacity to induce necrosis. We compared several mutated forms of ß-CRY and INF1 with a modulated capacity to trigger ROS and NO production, bind plant sterols and induce cell death responses in cell cultures of Nicotiana tabacum L. cv. Xanthi. We evidenced a key role of the lysine residue in position 13 in basic elicitins for their biological activity and enhancement of necrotic effects of acidic INF1 by the replacement of the valine residue in position 84 by larger phenylalanine. Studied elicitins activated in differing intensity signaling pathways of ROS, NO and phytohormones jasmonic acid, ethylene and salicylic acid, known to be involved in triggering of hypersensitive response and establishment of systemic resistance.


Assuntos
Nitrogênio , Phytophthora , Proteínas de Algas/genética , Sequência de Aminoácidos , Proteínas Fúngicas/metabolismo , Oxigênio , Plantas/metabolismo , Espécies Reativas de Oxigênio , Relação Estrutura-Atividade
2.
Methods Mol Biol ; 2057: 45-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31595469

RESUMO

S-nitrosation as a redox-based posttranslational modification of protein cysteine has emerged as an integral part of signaling pathways of nitric oxide across all types of organisms. Protein S-nitrosation status is controlled by two key mechanisms: by direct denitrosation performed by the thioredoxin/thioredoxin reductase system, and in an indirect way mediated by S-nitrosoglutathione reductase (GSNOR). GSNOR, which has been identified as a key component of S-nitrosothiols catabolism, catalyzes an irreversible decomposition of abundant intracellular S-nitrosothiol, S-nitrosoglutathione (GSNO) to oxidized glutathione using reduced NADH cofactor. In plants, GSNOR has been shown to play important roles in plant growth and development and plant responses to abiotic and biotic stress stimuli. In this chapter, optimized protocols of spectrophotometric measurement of GSNOR enzymatic activity and activity staining in native polyacrylamide gels in plant GSNOR are presented.


Assuntos
Aldeído Oxirredutases/metabolismo , Ensaios Enzimáticos/métodos , Plantas/enzimologia , S-Nitrosotióis/metabolismo , Fluorescência , NAD/química , Eletroforese em Gel de Poliacrilamida Nativa , Óxido Nítrico/metabolismo , Nitrosação , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , S-Nitrosoglutationa/síntese química , S-Nitrosoglutationa/química , Coloração e Rotulagem/métodos , Fluxo de Trabalho
3.
Antioxidants (Basel) ; 8(4)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999668

RESUMO

Reactive oxygen species (ROS) have been recognized as important signaling compoundsof major importance in a number of developmental and physiological processes in plants. Theexistence of cellular compartments enables efficient redox compartmentalization and ensuresproper functioning of ROS-dependent signaling pathways. Similar to other organisms, theproduction of individual ROS in plant cells is highly localized and regulated bycompartment-specific enzyme pathways on transcriptional and post-translational level. ROSmetabolism and signaling in specific compartments are greatly affected by their chemicalinteractions with other reactive radical species, ROS scavengers and antioxidant enzymes. Adysregulation of the redox status, as a consequence of induced ROS generation or decreasedcapacity of their removal, occurs in plants exposed to diverse stress conditions. During stresscondition, strong induction of ROS-generating systems or attenuated ROS scavenging can lead tooxidative or nitrosative stress conditions, associated with potential damaging modifications of cellbiomolecules. Here, we present an overview of compartment-specific pathways of ROS productionand degradation and mechanisms of ROS homeostasis control within plant cell compartments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...