Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 3(1): 1500221, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27610333

RESUMO

The mechanisms by which light is generated in an organic light emitting diode have slowly been elucidated over the last ten years. The role of triplet annihilation has demonstrated how the "spin statistical limit" can be surpassed, but it cannot account for all light produced in the most efficient devices. Here, a further mechanism is demonstrated by which upper excited triplet states can also contribute to indirect singlet production and delayed fluorescence. Since in a device the population of these TN states is large, this indirect radiative decay channel can contribute a sizeable fraction of the total emission measured from a device. The role of intra- and interchain charge transfer states is critical in underpinning this mechanism.

2.
Angew Chem Int Ed Engl ; 53(43): 11616-9, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25212958

RESUMO

Two phosphorescent dinuclear iridium(III) diastereomers (ΛΔ/ΔΛ) and (ΛΛ/ΔΔ) are readily separated by making use of their different solubilities in hot hexane. The bridging diarylhydrazide ligand plays an important role in the electrochemistry and photophysics of the complexes. Organic light-emitting devices (OLEDs) that use these complexes as the green-emissive dopants in solution-processable single-active-layer architectures feature electroluminescence efficiencies that are remarkably high for dinuclear metal complexes, achieving maximum values of 37 cd A(-1), 14 lm W(-1), and 11% external quantum efficiency.

3.
Phys Chem Chem Phys ; 16(39): 21543-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25188793

RESUMO

In this paper we investigate the delayed fluorescence (DF) phenomena in the widely used laser dye, rhodamine 6G, and its derivative ATTO-532 as a function of excitation energy using highly sensitive time-resolved gated nanosecond spectroscopy. Excitation with UV laser radiation results in delayed emission, which arises from singlet states created from geminate pair recombination, not triplet annihilation. For the first time the origins and photo-physical properties of delayed fluorescence in these highly fluorescent molecules are elucidated.


Assuntos
Elétrons , Fluorescência , Rodaminas/química , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
4.
Adv Mater ; 25(27): 3707-14, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23703877

RESUMO

Organic light-emitting diodes (OLEDs) have their performance limited by the number of emissive singlet states created upon charge recombination (25%). Recently, a novel strategy has been proposed, based on thermally activated up-conversion of triplet to singlet states, yielding delayed fluorescence (TADF), which greatly enhances electroluminescence. The energy barrier for this reverse intersystem crossing mechanism is proportional to the exchange energy (ΔEST ) between the singlet and triplet states; therefore, materials with intramolecular charge transfer (ICT) states, where it is known that the exchange energy is small, are perfect candidates. However, here it is shown that triplet states can be harvested with 100% efficiency via TADF, even in materials with ΔEST of more than 20 kT (where k is the Boltzmann constant and T is the temperature) at room temperature. The key role played by lone pair electrons in achieving this high efficiency in a series of ICT molecules is elucidated. The results show the complex photophysics of efficient TADF materials and give clear guidelines for designing new emitters.

5.
Adv Mater ; 25(10): 1455-9, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23281058

RESUMO

Simple trilayer, deep blue, fluorescent exciplex organic light-emitting diodes (OLEDs) are reported. These OLEDs emit from an exciplex state formed between the highest occupied molecular orbital (HOMO) of N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) and lowest unoccupied molecular orbital (LUMO) of 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBi) and the NPB singlet manifold, yielding 2.7% external quantum efficiency at 450 nm. It is shown that the majority of the delayed emission in electroluminescence arises from P-type triplet fusion at NPB sites not E-type reverse intersystem crossing because of the presence of the NPB triplet state acting as a deep trap.

6.
J Org Chem ; 76(20): 8300-10, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21950840

RESUMO

This article sheds new light on the interplay of electronic and conformational effects in luminescent bipolar molecules. A series of carbazole/1,3,4-oxadiazole hybrid molecules is described in which the optoelectronic properties are systematically varied by substituent effects which tune the intramolecular torsion angles. The synthesis, photophysical properties, cyclic voltammetric data, X-ray crystal structures, and DFT calculations are presented. Excited state intramolecular charge transfer (ICT) is observed from the donor carbazole/2,7-dimethoxycarbazole to the acceptor phenyl/diphenyloxadiazole moieties. Introducing more bulky substituents onto the diphenyloxadiazole fragment systematically increases the singlet and triplet energy levels (E(S) and E(T)) and blue shifts the absorption and emission bands. The triplet excited state is located mostly on the oxadiazole unit. The introduction of 2,7-dimethoxy substituents onto the carbazole moiety lowers the value of E(S), although E(T) is unaffected, which means that the singlet-triplet gap is reduced (for 7bE(S) - E(T) = 0.61 eV). A strategy has been established for achieving unusually high triplet levels for bipolar molecules (E(T) = 2.64-2.78 eV at 14 K) while at the same time limiting the increase in the singlet energy.

7.
J Phys Condens Matter ; 22(18): 185802, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21393693

RESUMO

We study triplet migration properties in NPB (N, N'-diphenyl-N, N'-bis(1-naphthyl)-1, 1'-biphenyl-4, 4''-diamine) films using time resolved gated spectroscopy and dispersive migration theory as our main tools of analysis. We show that in NPB, a well-known hole transporter in organic light emitting diodes, at high excitation densities triplet migration follows two regimes--a dispersive non-equilibrium regime (distinguished by exciton energetical relaxation within the distribution of hopping sites and as a consequence the hopping frequency being time dependent) that evolves into a second, non-dispersive equilibrium regime. Further, we observe a third region, which we term acceleration. From the turning over time between dispersive and non-dispersive dynamics, we deduce the width of the triplet density of states (DOS). We observe how the DOS variance changes when one decreases the thickness of the NPB film and note how surface effects are becoming important. Furthermore, the DOS variance of NPB changes when another organic layer is evaporated on top, namely Ir(piq)3 (tris(1-phenylisoquinoline)iridium(III)). We believe that these changes are due to the different polarizable media in contact with the NPB film, either vacuum or Ir(piq)3. We also show in this paper that the triplet level when time approaches zero is much higher in energy than the relaxed triplet levels, as quoted in most published papers; these values are thus incorrect for NPB. Lastly, it is possible that even at room temperature, the dispersive regime might be important for triplet migration at high initial triplet concentrations and might affect the diffusion length of triplets to a certain extent. However, more experimentation needs to be performed in order to address this question. Overall, we have characterized the triplet migration dynamics of NPB fully and shown that it agrees with previously published observations for other organic semiconductors and theoretical considerations.

8.
J Chem Phys ; 130(7): 074501, 2009 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19239296

RESUMO

In this paper we report the results of optical characterization of 4,4-N,N(')-dicarbazolyl-1,1(')-biphenyl (CBP), known as a host material for phosphorescent light emitting devices. Using absorption, steady state, and time-resolved spectroscopy, we explore the singlet and triplet states in solid and solution samples of CBP. In solutions we observe two distinct short-lived states with well-resolved emission originating from individual molecule singlet states (at 365 and 380 nm) and "quenching" low energy (LE) states (at 404 and 424 nm). The latter are seen only in saturated solutions and solid samples. Both of those species have different lifetimes. After UV exposure of very concentrated degassed solution the intensities of the LE bands starts to decrease. The longer the solution is exposed to UV, the less emission is seen at 404 and 424 nm, until it is totally gone. The spectrum of the highly concentrated solution is then the same as the spectrum of dilute solution, i.e., only emission at 365 and 380 nm is present. An increase in intensities of the singlet emission peaks correlates with an increase in UV exposure time. Similar behavior is observed in evaporated CBP film. We propose that this behavior is due to chemical instability of the weak N-C bonding of carbazolyl moiety-this creates new degradational species over time which dissociate after exposure to UV. We believe this to be the reason for variation in CBP fluorescence and delayed fluorescence spectra recorded by various research groups. Further, we detected two types of very long-lived states. One of these states (higher energy) is ascribed to molecular phosphorescence emission, the other to emission from low energy triplet trap states which we relate to degradational species. We propose that triplets are more easily caught by these latter sites when their hopping rate increases, and they emit inefficiently from these lower energy sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...