Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 150: 213433, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37104962

RESUMO

The importance of the inert environment in the transmission of pathogens has been reassessed in recent years. To reduce cross-contamination, new biocidal materials used in high touch surfaces (e.g., stair railings, door handles) have been developed. However, their impact on skin remains poorly described. The present study aimed to evaluate the antibacterial properties and the risk of skin irritation of two materials based on hard-anodized aluminum (AA) impregnated with quaternary ammonium compound solutions (QAC#1 or QAC#2). The QAC#1 or QAC#2 solutions vary in composition, QAC#2 being free of dioctyl dimethyl ammonium chloride (Dio-DAC) and octyl decyl dimethyl ammonium chloride (ODDAC). Unlike AA used as a control, both AA-QAC#1 and AA-QAC#2 had excellent and rapid antibacterial efficacy, killing 99.9 % of Staphylococcus aureus and Escherichia coli bacteria, in 15 s and 1 min, respectively. The impregnation solutions (QAC#1 and QAC#2) did not show any skin sensitizing effect on transformed human keratinocytes. Nevertheless, these solutions as well as the materials (AA-QAC#1, AA-QAC#2), and the liquid extracts derived from them, induced a very rapid cytotoxicity on L929 murine fibroblasts (>70 % after 1 h of contact) as shown by LDH, MTS and neutral red assays. This cytotoxicity can be explained by the fast QACs release occurring when AA-QAC#1 and AA-QAC#2 were immersed in aqueous medium. To overcome the limitation of assays based on liquid condition, an in vitro skin irritation assay on reconstructed human epidermis (RHE) was developed. The effect of the materials upon their direct contact with the epidermis grown at the liquid-air interface was determined by evaluating tissue viability and quantifying interleukin-1 alpha (IL-1α) which is released in skin during injury or infection. AA-QAC#1 induced a significant decrease in RHE viability, close to OECD and ISO 10993-10 acceptability thresholds and enhanced the pro-inflammatory IL-1α secretion compared with AA-QAC#2. Finally, these results were corroborated by in vivo assays on mice using erythema and edema visual scores, histological observations, and epidermal thickness measurement. AA had no effect on the skin, while a stronger irritation was induced by AA-QAC#1 compared with AA-QAC#2. Hence, these materials were classified as moderate and slight irritants, respectively. In summary, this study revealed that AA-QAC#2 without Dio-DAC and ODDAC could be a great candidate for high touch surface applications, showing an extremely effective and rapid bactericidal activity, without inducing adverse effects for skin tissue.


Assuntos
Compostos de Amônio , Humanos , Animais , Camundongos , Compostos de Amônio/toxicidade , Alumínio/toxicidade , Cloreto de Amônio/farmacologia , Epiderme/patologia , Antibacterianos/toxicidade
2.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328724

RESUMO

The success of dental implant treatment after tooth extraction is generally maximized by preserving the alveolar ridge using cell-free biomaterials. However, these treatments can be associated with inflammatory reactions, leading to additional bone volume loss hampering dental implant positioning. Our group developed a self-assembled bone-like substitute constituted of osteogenically induced human adipose-derived stromal/stem cells (hASCs). We hypothesized that a bone morphogenetic protein (BMP) supplementation could improve the in vitro osteogenic potential of the bone-like substitute, which would subsequently translate into enhanced alveolar bone healing after tooth extraction. ASCs displayed a better osteogenic response to BMP-9 than to BMP-2 in monolayer cell culture, as shown by higher transcript levels of the osteogenic markers RUNX2, osterix (OSX/SP7), and alkaline phosphatase after three and six days of treatment. Interestingly, BMP-9 treatment significantly increased OSX transcripts and alkaline phosphatase activity, as well as pro-angiogenic angiopoietin-1 gene expression, in engineered bone-like substitutes after 21 days of culture. Alveolar bone healing was investigated after molar extraction in nude rats. Microcomputed tomography and histological evaluations revealed similar, or even superior, global alveolar bone preservation when defects were filled with BMP-9-treated bone-like substitutes for ten weeks compared to a clinical-grade biomaterial, with adequate gingival re-epithelialization in the absence of resorption.


Assuntos
Substitutos Ósseos , Implantes Dentários , Fosfatase Alcalina/metabolismo , Processo Alveolar , Animais , Materiais Biocompatíveis , Fator 2 de Diferenciação de Crescimento , Humanos , Ratos , Extração Dentária/efeitos adversos , Microtomografia por Raio-X
3.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199883

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood-brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fragmentos de Peptídeos/farmacologia , Doença de Alzheimer/metabolismo , Animais , Humanos
4.
RSC Adv ; 11(60): 38172-38188, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498065

RESUMO

Infections caused by multidrug-resistant bacteria are a major public health problem. Their transmission is strongly linked to cross contamination via inert surfaces, which can serve as reservoirs for pathogenic microorganisms. To address this problem, antibacterial materials applied to high-touch surfaces have been developed. However, reaching a rapid and lasting effectiveness under real life conditions of use remains challenging. In the present paper, hard-anodized aluminum (AA) materials impregnated with antibacterial agents (quaternary ammonium compounds (QACs) and/or nitrate silver (AgNO3)) were prepared and characterized. The thickness of the anodized layer was about 50 µm with pore diameter of 70 nm. AA with QACs and/or AgNO3 had a water contact angle varying between 45 and 70°. The antibacterial activity of the materials was determined under different experimental settings to better mimic their use, and included liquid, humid, and dry conditions. AA-QAC surfaces demonstrated excellent efficiency, killing >99.9% of bacteria in 5 min on a wide range of Gram-positive (Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus faecium) and Gram-negative (streptomycin-resistant Salmonella typhimurium and encapsulated Klebsiella pneumoniae) pathogens. AA-QACs showed a faster antibacterial activity (from 0.25 to 5 min) compared with antibacterial copper used as a reference (from 15 min to more than 1 h). We show that to maintain their high performance, AA-QACs should be used in low humidity environments and should be cleaned with solutions composed of QACs. Altogether, AA-QAC materials constitute promising candidates to prevent the transmission of pathogenic bacteria on high-touch surfaces.

5.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066607

RESUMO

The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-ß superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-ß superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-ß superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-ß superfamily and their associated complications are debated.


Assuntos
Doenças Ósseas/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Fator de Crescimento Transformador beta/metabolismo , Animais , Doenças Ósseas/genética , Humanos , Osteoblastos/citologia , Osteoblastos/patologia , Osteoclastos/citologia , Osteoclastos/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/genética
6.
Front Biosci (Schol Ed) ; 8(2): 227-63, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27100704

RESUMO

As the populations of the Western world become older, they will suffer more and more from bone defects related to osteoporosis (non-union fractures, vertebral damages), cancers (malignant osteolysis) and infections (osteomyelitis). Autografts are usually used to fill these defects, but they have several drawbacks such as morbidity at the donor site and the amount and quality of bone that can be harvested. Recent scientific milestones made in biomaterials development were shown to be promising to overcome these limitations. Cell interactions with biomaterials can be improved by adding at their surface functional groups such as adhesive peptides and/or growth factors. The development of such biomimetic materials able to control bone cell responses can only proceed if it is based on a sound understanding of bone cell behavior and regulation. This review focuses on bone physiology and the regulation of bone cell differentiation and function, and how the latest advances in biomimetic materials can be translated within promising clinical outcomes.


Assuntos
Materiais Biocompatíveis/farmacologia , Materiais Biomiméticos/farmacologia , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Fatores Etários , Idoso , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...