Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 4200, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378723

RESUMO

Several recumbirostran 'microsaurs' are known from early Permian sites across Germany, including the Tambach Formation in Thuringia, central Germany. The only 'microsaur' thus far described from the Tambach Formation was the ostodolepid recumbirostran Tambaroter carrolli. However, there is also the documented presence of an undescribed recumbirostran 'microsaur' at the well-known Bromacker locality. The Bromacker locality is highly recognized and best known for its very diverse and extremely well-preserved terrestrial tetrapod assemblage combined with the co-occurrence of an exceptional vertebrate ichnofossil record. Here we describe a second new recumbirostran taxon from the Tambach Formation, which is also the first from the Bromacker locality itself. Phylogenetic analysis indicates that the new taxon, Bromerpeton subcolossus gen. et sp. nov., is a brachystelechid recumbirostran, a group also known elsewhere in Germany. The following features differentiate Bromerpeton from the other members of the clade: the presence of 13 maxillary teeth, narrow postorbitals that do not substantially contribute to the postorbital region of the skull, the frontal does not contribute to the orbital margin, and the presence of five manual digits. This new recumbirostran 'microsaur' further adds to the unique ecosystem that is preserved at the Bromacker locality, granting us a better understanding of what was living underfoot the larger more well-known animals at the locality. Likewise, it expands our understanding of the evolution of recumbirostran 'microsaurs', especially with regards to digit and limb reduction within the clade.


Assuntos
Fósseis , Dente , Animais , Filogenia , Ecossistema , Crânio/anatomia & histologia
3.
Sci Adv ; 8(32): eabm8280, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947665

RESUMO

How sauropod dinosaurs were able to withstand the forces associated with their immense size represents one of the most challenging biomechanical scenarios in the evolution of terrestrial tetrapods, but also one lacking robust biomechanical testing. Here, we use finite element analyses to quantify the biomechanical effects of foot skeletal postures with and without the presence of a soft tissue pad in sauropodomorphs. We find that none of the models can maintain bone stresses that fall within optimal bone safety factors in the absence of a soft tissue pad. Our findings suggest that a soft tissue pad in sauropods would have reduced bone stresses by combining the mechanical advantages of a functionally plantigrade foot with the plesiomorphic skeletally digitigrade saurischian condition. The acquisition of a developed soft tissue pad by the Late Triassic-Early Jurassic may represent one of the key adaptations for the evolution of gigantism that has become emblematic of these dinosaurs.

4.
J Morphol ; 280(6): 849-878, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30964205

RESUMO

The biomechanics of the sauropod dinosaur pes is poorly understood, particularly among the earliest members of the group. To date, reasonably complete and articulated pedes in Early Middle Jurassic sauropods are rare, limited to a handful of taxa. Of these, Rhoetosaurus brownei, from eastern Australia, is currently the only one from the Gondwanan Middle Jurassic that preserves an articulated pes. Using Rhoetosaurus brownei as a case exemplar, we assessed its paleobiomechanical capabilities and pedal posture. Physical and virtual manipulations of the pedal elements were undertaken to evaluate the range of motion between the pedal joints, under both bone-to-bone and cartilaginous scenarios. Using the results as constraints, virtual reconstructions of all possible pedal postures were generated. We show that Rhoetosaurus brownei was capable of significant digital mobility at the osteological metatarsophalangeal and distal interphalangeal joints. We assume these movements would have been restricted by soft tissue in life but that their presence would have helped in the support of the animal. Further insights based on anatomy and theoretical mechanical constraints restricted the skeletal postures to a range encompassing digitigrade to subunguligrade stances. The approach was extended to additional sauropodomorph pedes, and some validation was provided via the bone data of an African elephant pes. Based on the resulting pedal configurations, the in-life plantar surface of the sauropod pes is inferred to extend caudally from the digits, with a soft tissue pad supporting the elevated metatarsus. The plantar pad is inferred to play a role in the reduction of biomechanical stresses, and to aid in support and locomotion. A pedal pad may have been a key biomechanical innovation in early sauropods, ultimately resulting in a functionally plantigrade pes, which may have arisen during the Early to Middle Jurassic. Further mechanical studies are ultimately required to permit validation of this long-standing hypothesis.


Assuntos
Dinossauros/anatomia & histologia , Pé/anatomia & histologia , Postura , Amplitude de Movimento Articular , Animais , Evolução Biológica , Dinossauros/fisiologia , Pé/fisiologia , Fósseis/anatomia & histologia , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia , Locomoção , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...