Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053818

RESUMO

Bone fractures often require internal fixation using plates or screws. Normally, these devices are made of permanent metals like titanium providing necessary strength and biocompatibility. However, they can also cause long-term complications and may require removal. An interesting alternative are biocompatible degradable devices, which provide sufficient initial strength and then degrade gradually. Among other materials, biodegradable magnesium alloys have been developed for craniofacial and orthopaedic applications. Previously, we tested implants made of magnesium hydroxide and RS66, a strong and ductile ZK60-based alloy, with respect to biocompatibility and degradation behaviour. Here, we compare the effects of dissolving magnesium hydroxide and RS66 cylinders on bone regeneration and bone growth in rabbit condyles using microtomographical and histological analysis. Both magnesium hydroxide and RS66 induced a considerable osteoblastic activity leading to distinct but different spatio-temporal patterns of cancellous and periosteal bone growth. Dissolving RS66 implants induced a prominent periosteal bone formation on the medial surface of the original condyle whereas dissolving magnesium hydroxide implants enhance mainly cancellous bone formation. Especially periosteal bone formation was completed after 6 and 8 weeks, respectively. The observed bone promoting functions are in line with previous reports of magnesium stimulating cancellous and periosteal bone growth and possible underlying signalling mechanisms are discussed. STATEMENT OF SIGNIFICANCE: Biodegradable magnesium based implants are promising candidates for use in orthopedic and traumatic surgery. Although these implants are in the scientific focus for a long time, comparatively little is known about the interactions between degrading magnesium and the biological environment. In this work, we investigated the effects of two degrading cylindrical magnesium implants (MgOH2 and RS66) both on bone regeneration and on bone growth. Both MgOH2 and RS66 induce remarkable osteoblastic activities, however with different spatio-temporal patterns regarding cancellous and periosteal bone growth. We hypothesize that degradation products do not diffuse directionless away, but are transported by the restored blood flow in specific spatial patterns which is also dependent on the used surgical technique.

2.
Acta Biomater ; 11: 554-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25278442

RESUMO

Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 µm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/síntese química , Líquidos Corporais/química , Sobrevivência Celular/efeitos dos fármacos , Magnésio/química , Magnésio/farmacologia , Metais Terras Raras/química , Ligas/química , Ligas/farmacologia , Animais , Células 3T3 BALB , Materiais Biocompatíveis/farmacologia , Corrosão , Teste de Materiais , Metais Terras Raras/farmacologia , Camundongos , Coelhos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...