Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 10579, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601341

RESUMO

Molecules that correct the folding of protein mutants, restoring their functional trafficking, are called pharmacoperones. Most are clinically irrelevant and possess intrinsic antagonist or agonist activity. Here, we identify compounds capable of rescuing the activity of mutant gonadotropin-releasing hormone receptor or GnRHR which, is sequestered within the cell and if dysfunctional leads to Hypogonadotropic Hypogonadism. To do this we screened the E90K GnRHR mutant vs. a library of 645,000 compounds using a cell-based calcium detection system. Ultimately, we identified 399 compounds with EC50 ≤ 5 µM with no effect in counterscreen assays. Medicinal chemistry efforts confirmed activity of 70 pure samples and mode of action studies, including radioligand binding, inositol phosphate, and toxicity assays, proved that we have a series of tractable compounds that can be categorized into structural clusters. These early lead molecules rescue mutant GnRHR function and are neither agonist nor antagonists of the GnRHR cognate receptor, a feature required for potential clinical utility.


Assuntos
Receptores LHRH/agonistas , Receptores LHRH/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Fosfatos de Inositol/metabolismo , Mutação , Dobramento de Proteína , Transporte Proteico , Receptores LHRH/genética
2.
Emerg Top Life Sci ; 3(1): 39-52, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33523195

RESUMO

Proteostasis refers to the process whereby the cell maintains in equilibrium the protein content of different compartments. This system consists of a highly interconnected network intended to efficiently regulate the synthesis, folding, trafficking, and degradation of newly synthesized proteins. Molecular chaperones are key players of the proteostasis network. These proteins assist in the assembly and folding processes of newly synthesized proteins in a concerted manner to achieve a three-dimensional structure compatible with export from the endoplasmic reticulum to other cell compartments. Pharmacologic interventions intended to modulate the proteostasis network and tackle the devastating effects of conformational diseases caused by protein misfolding are under development. These include small molecules called pharmacoperones, which are highly specific toward the target protein serving as a molecular framework to cause misfolded mutant proteins to fold and adopt a stable conformation suitable for passing the scrutiny of the quality control system and reach its correct location within the cell. Here, we review the main components of the proteostasis network and how pharmacoperones may be employed to correct misfolding of two G protein-coupled receptors, the vasopressin 2 receptor and the gonadotropin-releasing hormone receptor, whose mutations lead to X-linked nephrogenic diabetes insipidus and congenital hypogonadotropic hypogonadism in humans respectively.

3.
Biochem J ; 475(18): 2941-2953, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30068530

RESUMO

A series of compounds formerly identified by high-throughput screening was studied for their ability to serve as pharmacoperones for the vasopressin type 2 receptor (V2R) mutant L83Q, which is known to cause nephrogenic diabetes insipidus (NDI). Three compounds were particularly effective in rerouting the mutant receptor in a concentration-dependent manner, were neither agonists nor antagonists, and displayed low cellular toxicity. Compound 1 was most effective and can be used as a molecular probe for future studies of how small molecules may affect NDI caused by mutant V2R. These compounds, however, failed to rescue the V2R Y128S mutant, indicating that the compounds described may not work in the rescue of all known mutants of V2R. Taken collectively, the present studies have now identified a promising lead compound that could function as a pharmacoperone to correct the trafficking defect of the NDI-associated mutant V2R L83Q and thus has the therapeutic potential for the treatment of NDI.


Assuntos
Chaperonas Moleculares/farmacologia , Sondas Moleculares/farmacologia , Mutação de Sentido Incorreto , Receptores de Vasopressinas/metabolismo , Substituição de Aminoácidos , Diabetes Insípido Nefrogênico/tratamento farmacológico , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/química , Receptores de Vasopressinas/química , Receptores de Vasopressinas/genética
4.
PLoS One ; 12(8): e0181830, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28767678

RESUMO

Pharmacoperones are small molecules that diffuse into cells and rescue misfolded, mistrafficked protein mutants, restoring their function. These substances act with high target specificity, serving as templates to fold (or refold) receptors, enzymes, ion channels or other proteins and enable them to pass the scrutiny of the cellular quality control system ("rescue"). In the present study we demonstrate that a rescued mutant (L83Q) of the vasopressin type 2 receptor (V2R), shows a strong bias for Gs coupling unlike the WT V2 receptor, which couples to both Gs and Gq/11. Failure of the mutant to couple to Gq/11 was not due to a limiting quantity of G-proteins since other Gq/11-coupled receptors (WT V2R, histamine receptor and muscarinic receptor) responded appropriately to their ligands. Transfection with DNA encoding Gq enabled the V2 receptor mutant to couple to this G protein, but only modestly compared with the WT receptor. Fourteen V2R mutant pharmacoperones, of multiple chemical classes, obtained from a high throughput screen of a 660,000 structure library, and one V2R peptidomimetic antagonist rescues L83Q. The rescued mutant shows similar bias with all pharmacoperones identified, suggesting that the bias is intrinsic to the mutant protein's structure, rather than due to the chemical class of the pharmacoperone. In the case of V2R mutant Y128S, rescue with a pharmacoperone revealed constitutive activity, also with bias for Gs, although both IP and cAMP were produced in response to agonist. These results suggest that particular rescued receptor mutants show functional characteristics that differ from the WT receptor; a finding that may be important to consider as pharmacoperones are developed as therapeutic agents.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Morfolinas/farmacologia , Mutação , Receptores de Vasopressinas/genética , Compostos de Espiro/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/química , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , AMP Cíclico/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Morfolinas/química , Receptores de Vasopressinas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Compostos de Espiro/química
5.
SLAS Discov ; 22(7): 887-896, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28346094

RESUMO

Primary hyperoxaluria is the underlying cause of oxalosis and is a life-threatening autosomal recessive disease, for which treatment may require dialysis or dual liver-kidney transplantation. The most common primary hyperoxaluria type 1 (PH1) is caused by genetic mutations of a liver-specific enzyme alanine:glyoxylate aminotransferase (AGT), which results in the misrouting of AGT from the peroxisomes to the mitochondria. Pharmacoperones are small molecules with the ability to modify misfolded proteins and route them correctly within the cells, which may present an effective strategy to treat AGT misrouting in PH1 disorders. We miniaturized a cell-based high-content assay into 1536-well plate format and screened ~4200 pharmacologically relevant compounds including Food and Drug Administration, European Union, and Japanese-approved drugs. This assay employs CHO cells stably expressing AGT-170, a mutant that predominantly resides in the mitochondria, where we monitor for its relocation to the peroxisomes through automated image acquisition and analysis. The miniaturized 1536-well assay yielded a Z' averaging 0.70 ± 0.07. Three drugs were identified as potential pharmacoperones from this pilot screen, demonstrating the applicability of this assay for large-scale high-throughput screening.


Assuntos
Hiperoxalúria/tratamento farmacológico , Ionóforos/farmacologia , Nefropatias/tratamento farmacológico , Animais , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos/métodos , Hiperoxalúria/genética , Hiperoxalúria/metabolismo , Hiperoxalúria Primária/tratamento farmacológico , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Transplante de Rim/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação/genética , Peroxissomos/efeitos dos fármacos , Peroxissomos/genética , Peroxissomos/metabolismo , Diálise Renal/métodos , Transaminases/genética , Transaminases/metabolismo
6.
Mol Cell Endocrinol ; 434: 176-85, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27389877

RESUMO

Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Mutação , Receptores de Vasopressinas/genética , Antagonistas dos Receptores de Hormônios Antidiuréticos/química , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Biblioteca de Peptídeos , Dobramento de Proteína/efeitos dos fármacos , Transporte Proteico , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/química , Receptores de Vasopressinas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
7.
J Biomol Screen ; 21(8): 824-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27280550

RESUMO

Pharmacoperones correct the folding of otherwise misfolded protein mutants, restoring function (i.e., providing "rescue") by correcting their trafficking. Currently, most pharmacoperones possess intrinsic antagonist activity because they were identified using methods initially aimed at discovering such functions. Here, we describe an ultra-high-throughput homogeneous cell-based assay with a cAMP detection system, a method specifically designed to identify pharmacoperones of the vasopressin type 2 receptor (V2R), a GPCR that, when mutated, is associated with nephrogenic diabetes insipidus. Previously developed methods to identify compounds capable of altering cellular trafficking of V2R were modified and used to screen a 645,000 compound collection by measuring the ability of library compounds to rescue a mutant hV2R [L83Q], using a cell-based luminescent detection system. The campaign initially identified 3734 positive modulators of cAMP. The confirmation and counterscreen identified only 147 of the active compounds with an EC50 of ≤5 µM. Of these, 83 were reconfirmed as active through independently obtained pure samples and were also inactive in a relevant counterscreen. Active and tractable compounds within this set can be categorized into three predominant structural clusters, described here, in the first report detailing the results of a large-scale pharmacoperone high-throughput screening campaign.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos/isolamento & purificação , Diabetes Insípido Nefrogênico/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Receptores de Vasopressinas/genética , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Diabetes Insípido Nefrogênico/genética , Predisposição Genética para Doença , Humanos , Mutação , Dobramento de Proteína , Transporte Proteico , Receptores de Vasopressinas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Vasopressinas/genética , Vasopressinas/metabolismo
8.
Trends Pharmacol Sci ; 36(8): 498-505, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26067100

RESUMO

Receptors, enzymes, and ion channels are traditional targets of therapeutic development. A common strategy is to target these proteins with agents that either activate or suppress their activity with ligands or substrates that occupy orthosteric sites or have allosteric interactions. An alternative approach involves regulation of protein trafficking. In principle, this approach enables 'rescue' of misfolded and misrouted mutant proteins to restore function, 'shipwrecking' of undesirable proteins by targeting them for destruction, and regulation of levels of partially expressed wild type (WT) proteins at their functional sites of action. Here, we present drug discovery strategies that identify 'pharmacoperones', which are small molecules that serve as molecular templates and cause otherwise misfolded mutant proteins to fold and route correctly.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Dobramento de Proteína/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
9.
Assay Drug Dev Technol ; 13(1): 16-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25710543

RESUMO

Primary hyperoxaluria is a severe disease for which the best current therapy is dialysis or organ transplantation. These are risky, inconvenient, and costly procedures. In some patients, pyridoxine treatment can delay the need for these surgical procedures. The underlying cause of particular forms of this disease is the misrouting of a specific enzyme, alanine:glyoxylate aminotransferase (AGT), to the mitochondria instead of the peroxisomes. Pharmacoperones are small molecules that can rescue misfolded proteins and redirect them to their correct location, thereby restoring their function and potentially curing disease. In the present study, we miniaturized a cell-based assay to identify pharmacoperone drugs present in large chemical libraries to selectively correct AGT misrouting. This assay employs AGT-170, a mutant form of AGT that predominantly resides in the mitochondria, which we monitor for its relocation to the peroxisomes through automated image acquisition and analysis. Over the course of a pilot screen of 1,280 test compounds, we achieved an average Z'-factor of 0.72±0.02, demonstrating the suitability of this assay for HTS.


Assuntos
Bioensaio/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Hiperoxalúria Primária/tratamento farmacológico , Hiperoxalúria Primária/patologia , Chaperonas Moleculares/farmacologia , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Desenho de Fármacos , Humanos , Chaperonas Moleculares/síntese química , Chaperonas Moleculares/classificação , Fenótipo , Tecnologia Farmacêutica/métodos
10.
Assay Drug Dev Technol ; 12(4): 238-46, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24831790

RESUMO

We describe a phenotypic high throughput screening (HTS) calcium flux assay designed to identify pharmacoperones for the gonadotropin releasing hormone receptor (GnRHR). Pharmacoperones are target-specific, small molecules that diffuse into cells, rescue misfolded protein mutants, and restore them to function. Rescue is based on correcting the trafficking of mutants that would otherwise be retained in the endoplasmic reticulum and unable to function correctly. This approach identifies drugs with a significant degree of novelty, relying on cellular mechanisms that are not currently exploited. Development of such assays is important, since the extensive use of agonist/antagonist screens alone means that useful chemical structures may be present in existing libraries but have not been previously identified using existing methods. Our assay utilizes cell lines stably expressing a GnRHR mutant under the control of a tetracycline (OFF) transactivator. This allows us to quantitate the level of functional and properly trafficked G protein coupled receptors present in each test well. Furthermore, since we are able to turn receptor expression on and off, we can rapidly eliminate the majority of false positives from our screening results. Our data show that this approach is likely to be successful in identifying hits from large chemical libraries.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Receptores LHRH/efeitos dos fármacos , Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Células HeLa , Humanos , Mutação/genética , Mutação/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores LHRH/genética , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
11.
Mol Cell ; 54(1): 166-179, 2014 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-24685158

RESUMO

Molecular chaperones triage misfolded proteins via action as substrate selectors for quality control (QC) machines that fold or degrade clients. Herein, the endoplasmic reticulum (ER)-associated Hsp40 JB12 is reported to participate in partitioning mutant conformers of gonadotropin-releasing hormone receptor (GnRHR), a G protein-coupled receptor, between ER-associated degradation (ERAD) and an ERQC autophagy pathway. ERQC autophagy degrades E90K-GnRHR because pools of its partially folded and detergent-soluble degradation intermediates are resistant to ERAD. S168R-GnRHR is globally misfolded and disposed of via ERAD, but inhibition of p97, the protein retrotranslocation motor, shunts S168R-GnRHR from ERAD to ERQC autophagy. Partially folded and grossly misfolded forms of GnRHR associate with JB12 and Hsp70. Elevation of JB12 promotes ERAD of S168R-GnRHR, with E90K-GnRHR being resistant. E90K-GnRHR elicits association of the Vps34 autophagy initiation complex with JB12. Interaction between ER-associated Hsp40s and the Vps34 complex permits the selective degradation of ERAD-resistant membrane proteins via ERQC autophagy.


Assuntos
Autofagia , Degradação Associada com o Retículo Endoplasmático , Dobramento de Proteína , Receptores LHRH/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células COS , Chlorocebus aethiops , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutação , Inibidores de Proteassoma/farmacologia , Conformação Proteica , Dobramento de Proteína/efeitos dos fármacos , Transporte Proteico , Proteólise , Interferência de RNA , Receptores LHRH/química , Receptores LHRH/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Transfecção
13.
Pharmacol Res ; 83: 38-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24373832

RESUMO

A pharmacoperone (from "pharmacological chaperone") is a small molecule that enters cells and serves as molecular scaffolding in order to cause otherwise-misfolded mutant proteins to fold and route correctly within the cell. Pharmacoperones have broad therapeutic applicability since a large number of diseases have their genesis in the misfolding of proteins and resultant misrouting within the cell. Misrouting may result in loss-of-function and, potentially, the accumulation of defective mutants in cellular compartments. Most known pharmacoperones were initially derived from receptor antagonist screens and, for this reason, present a complex pharmacology, although these are highly target specific. In this summary, we describe efforts to produce high throughput screens that identify these molecules from chemical libraries as well as a mouse model which provides proof-of-principle for in vivo protein rescue using existing pharmacoperones.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Transporte Proteico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
14.
Proc Natl Acad Sci U S A ; 110(52): 21030-5, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324164

RESUMO

Mutations in receptors, ion channels, and enzymes are frequently recognized by the cellular quality control system as misfolded and retained in the endoplasmic reticulum (ER) or otherwise misrouted. Retention results in loss of function at the normal site of biological activity and disease. Pharmacoperones are target-specific small molecules that diffuse into cells and serve as folding templates that enable mutant proteins to pass the criteria of the quality control system and route to their physiologic site of action. Pharmacoperones of the gonadotropin releasing hormone receptor (GnRHR) have efficacy in cell culture systems, and their cellular and biochemical mechanisms of action are known. Here, we show the efficacy of a pharmacoperone drug in a small animal model, a knock-in mouse, expressing a mutant GnRHR. This recessive mutation (GnRHR E(90)K) causes hypogonadotropic hypogonadism (failed puberty associated with low or apulsatile luteinizing hormone) in both humans and in the mouse model described. We find that pulsatile pharmacoperone therapy restores E(90)K from ER retention to the plasma membrane, concurrently with responsiveness to the endogenous natural ligand, gonadotropin releasing hormone, and an agonist that is specific for the mutant. Spermatogenesis, proteins associated with steroid transport and steroidogenesis, and androgen levels were restored in mutant male mice following pharmacoperone therapy. These results show the efficacy of pharmacoperone therapy in vivo by using physiological, molecular, genetic, endocrine and biochemical markers and optimization of pulsatile administration. We expect that this newly appreciated approach of protein rescue will benefit other disorders sharing pathologies based on misrouting of misfolded protein mutants.


Assuntos
Hipogonadismo/tratamento farmacológico , Chaperonas Moleculares/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Deficiências na Proteostase/genética , Receptores LHRH/genética , Testículo/fisiologia , Animais , Biomarcadores/metabolismo , Retículo Endoplasmático/metabolismo , Técnicas de Introdução de Genes , Hipogonadismo/genética , Masculino , Camundongos , Chaperonas Moleculares/uso terapêutico , Mutação/genética , Testículo/efeitos dos fármacos
15.
Mol Cell Endocrinol ; 381(1-2): 1-7, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23891857

RESUMO

Plasma membrane expression (PME) of the human GnRHR (hGnRHR) is regulated by a primate-specific Lys(191) which destabilizes a Cys(14)-Cys(200) bridge required by the cellular quality control system (QCS). A 4-amino, non-contiguous "motif" (Leu(112), Gln(208), Leu(300), Asp(302)) is required for this effect. The hGnRHR sequence, with or without Lys(191), decreases PME and inositol phosphate (IP) production when co-expressed with calnexin, a QCS chaperone. WT rat GnRHR, decreases PME and IP production, when co-expressed with calnexin, but to a lesser degree than hGnRH. When the human sequence contains the rat motif, IP production is closer to that of rat GnRHR. When Lys(191) is deleted from hGnRHR and co-expressed with calnexin, IP production is similar to the rat sequence. When rat GnRHR containing Lys(191) and the human motif is co-expressed with calnexin, IP production is similar to cells expressing the hGnRHR. The motif sequence appears to be a determinant of calnexin recognition.


Assuntos
Receptores LHRH/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Busserrelina/farmacologia , Células COS , Calnexina/metabolismo , Membrana Celular , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Humanos , Concentração Inibidora 50 , Fosfatos de Inositol/metabolismo , Lisina/genética , Camundongos , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Ratos , Receptores LHRH/agonistas , Receptores LHRH/genética , Especificidade da Espécie
16.
J Biomol Screen ; 18(8): 930-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23640875

RESUMO

Pharmacoperone drugs correct the folding of misfolded protein mutants and restore function (i.e., "rescue") by correcting the routing of (otherwise) misrouted mutants. Assays for pharmacoperones have not been applied to screen large libraries previously. Currently, most pharmacoperones possess intrinsic agonist or antagonist activities since these were identified using high-throughput screens aimed at discovering direct agonists or antagonists. Here we describe an ultra-high-throughput compatible no-wash assay system designed to specifically identify pharmacoperones of the vasopressin type 2 receptor (V2R). Development of such assays is important and novel since useful chemical structures with the ability to control cellular trafficking but lacking intrinsic agonist or antagonist properties have not likely been identified using existing screens. In the described assay, the level of functional human V2R (hV2R) (mutant) present in each test well is quantitated by stimulation with saturating levels of agonist followed by use of a luminescent-based cyclic adenosine monophosphate assay. This allows the assay to identify compounds that increase the trafficking of mutant hV2R[L(83)Q] in our model system.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Transporte Proteico/efeitos dos fármacos , Deficiências na Proteostase/tratamento farmacológico , Receptores de Vasopressinas/efeitos dos fármacos , Descoberta de Drogas , Humanos , Dobramento de Proteína/efeitos dos fármacos , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo
17.
Methods Enzymol ; 521: 3-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23351731

RESUMO

Mutations cause protein folding defects that result in cellular misrouting of otherwise functional proteins. Such mutations are responsible for a wide range of disease states, especially among G-protein coupled receptors. Drugs which serve as chemical templates and promote the proper folding of these proteins are valuable therapeutic molecules since they return functional proteins to the proper site of action. Small molecules have been identified that are able to function as pharmacological chaperones or "pharmacoperones" and stabilize the correct conformations of their target proteins with high specificity. Most of these are also agonists or antagonists of the proteins of interest, complicating potential therapeutic use. This is due, in part, to the fact that the majority of these were discovered during high-throughput screening campaigns using assays designed to detect agonists and antagonists, rather than compounds which improve the trafficking of misrouted mutants. The assays described in this report are designed specifically to identify compounds which result in the reactivation and correct trafficking of misfolded gonadotropin releasing hormone receptor and vasopressin type 2 receptor mutants, rather than those which act as agonists directly. The system reported is a generalizable approach amenable to use in automated (robotic) high-throughput screening efforts and can be used to identify compounds which affect protein conformation without necessarily acting as direct agonists or antagonists.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Mutação , Transporte Proteico/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Humanos , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Receptores Acoplados a Proteínas G/química , Receptores LHRH/química , Receptores LHRH/genética , Receptores LHRH/metabolismo , Receptores de Vasopressinas/química , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo
18.
Subcell Biochem ; 63: 263-89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23161143

RESUMO

G-protein-coupled receptors (GPCRs) are a large superfamily of plasma membrane proteins that play central roles in transducing endocrine, neural and -sensory signals. In humans, more than 30 disorders are associated with mutations in GPCRs and these proteins are common drug development targets, with 30-50% of drugs targeting them. GPCR mutants are frequently misfolded, recognized as defective by the cellular quality control system, retained in the endoplasmic reticulum and do not traffic to the plasma membrane. The use of small molecules chaperones (pharmacological chaperones or "pharmacoperones") to rescue misfolded GPCRs has provided a new approach for treatment of human diseases caused by misfolding and misrouting. This chapter provides an overview of the molecular basis of this approach using the human gonadotropin-releasing hormone receptor (hGnRHR) as model for treatment of conformational diseases provoked by -misfolded GPCRs.


Assuntos
Preparações Farmacêuticas/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores LHRH/metabolismo , Animais , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos
19.
Mol Endocrinol ; 26(11): 1847-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22918878

RESUMO

GnRH, produced in the hypothalamus, acts on pituitary gonadotropes to stimulate release of the gonadotropins LH and FSH. Reduced responsiveness of gonadotropes to GnRH is a primary cause of hypogonadotropic hypogonadism (HH), a disease characterized by gonadal dysfunction and low blood levels of gonadotropins. Loss-of-function mutations in the gene encoding the receptor for GnRH (GNRHR) are a common cause of HH. Sequencing of the GNRHR gene in patients with HH revealed mainly point mutations producing single amino acid substitutions that cause misfolding and misrouting of this G protein-coupled receptor. To generate a mouse model that mimics the human disease, we introduced a single amino acid substitution (E90K) into the mouse Gnrhr gene, which is identical to a known human recessive mutation. In humans, E90K causes severe HH by preventing formation of the E90-K121 salt bridge, which is essential for correct folding. In cell cultures, E90K causes misfolding that leads to almost complete retention by the protein quality control system and subsequent degradation. Here we report that the primary phenotype of mice homozygous for E90K is female infertility due to ovulation failure. Mutant males are fertile despite reduced gonadotropin levels and smaller testes. These results suggest decreased GnRH receptor signaling in the mutant animal, compared with wild type. Our findings suggest that a threshold level of GnRH receptor activity is required for ovulation.


Assuntos
Anovulação/genética , Hipogonadismo/genética , Mutação/genética , Deficiências na Proteostase/genética , Receptores LHRH/genética , Testículo/patologia , Substituição de Aminoácidos/genética , Animais , Anovulação/sangue , Anovulação/patologia , Anovulação/fisiopatologia , Sequência de Bases , Ciclo Estral , Feminino , Regulação da Expressão Gênica , Gonadotropinas/sangue , Homozigoto , Humanos , Hipogonadismo/sangue , Hipogonadismo/patologia , Hipogonadismo/fisiopatologia , Luteinização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Tamanho do Órgão , Receptores LHRH/agonistas , Receptores LHRH/metabolismo , Testículo/metabolismo
20.
Mol Endocrinol ; 26(7): 1179-88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22595961

RESUMO

G protein-coupled receptors (GPCR) play central roles in almost all physiological functions, and mutations in GPCR are responsible for over 30 hereditary diseases associated with loss or gain of receptor function. Gain of function mutants are frequently described as having constitutive activity (CA), that is, they activate effectors in the absence of agonist occupancy. Although many GPCR have mutants with CA, the GnRH receptor (GnRHR) was not, until 2010, associated with any CA mutants. The explanation for the failure to observe CA appears to be that the quality control system of the cell recognizes CA mutants of GnRHR as misfolded and retains them in the endoplasmic reticulum. In the present study, we identified several human (h)GnRHR mutants with substitutions in transmembrane helix 6 (F(272)K, F(272)Q, Y(284)F, C(279)A, and C(279)S) that demonstrate varying levels of CA after being rescued by pharmacoperones from different chemical classes and/or deletion of residue K(191), a modification that increases trafficking to the plasma membrane. The movement of the mutants from the endoplasmic reticulum (unrescued) to the plasma membrane (after rescue) is supported by confocal microscopy. Judging from the receptor-stimulated inositol phosphate production, mutants F(272)K and F(272)Q, after rescue, display the largest level of CA, an amount that is comparable with agonist-stimulated activation. Because mutations in other GPCR are, like the hGnRHR, scrutinized by the quality control system, this general approach may reveal CA in receptor mutants from other systems. A computer model of the hGnRHR and these mutants was used to evaluate the conformation associated with CA.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo , Animais , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Retículo Endoplasmático/genética , Humanos , Fosfatos de Inositol/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Receptores LHRH/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...