Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Psychopharmacol ; 24(4): 605-14, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19074537

RESUMO

Previous studies in rats and humans have shown that the essential amino acid tryptophan (TRP) is depleted after consumption of a gelatin-based protein-carbohydrate mixture, which is lacking L-tryptophan (TRP-). In rats, TRP depletion caused impaired object recognition but only had a modest effect on affective behaviour. Because these studies were preformed with Wistar rats, the aim of the present experiment was to evaluate strain differences in behavioural responses to acute TRP depletion between Brown Norway (BN) and Sprague Dawley (SD) rats. The rats were repeatedly treated with TRP- or a balanced control (TRP+) and were tested in tests of anxiety- and depression-related behaviour (open-field test, home cage emergence test, social interaction test, forced swim test) and memory. SD rats, but not BNs, showed more anxiety- and depression-related behaviour and impaired object recognition after TRP- treatment. There was a dissociation between plasma TRP levels, central 5-HT concentrations and 5-HIAA/5-HT turnover. Both strains showed about 60% decrease in plasma TRP/SigmaLNAA levels, whereas hippocampal 5-HT levels were lower after TRP- in BN but not SD rats. Conversely, 5-HIAA/5-HT turnover was lower after TRP- in SD but not BN rats, suggesting a dissociation between 5-HT storage and release in SDs. The present study suggests that acute tryptophan depletion effects are strain dependent on the behavioural and the neurochemical level.


Assuntos
Afeto , Comportamento Animal , Cognição , Triptofano/deficiência , Animais , Ansiedade/metabolismo , Ansiedade/psicologia , Depressão/metabolismo , Depressão/psicologia , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Relações Interpessoais , Masculino , Atividade Motora , Ratos , Ratos Endogâmicos BN , Ratos Sprague-Dawley , Tempo de Reação , Reconhecimento Psicológico , Serotonina/metabolismo , Especificidade da Espécie , Natação , Triptofano/sangue
2.
Genes Brain Behav ; 8(8): 829-34, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19740092

RESUMO

Serotonin is well known for its role in affection, but less known for its role in cognition. The serotonin transporter (SERT) has an essential role in serotonergic neurotransmission as it determines the magnitude and duration of the serotonin signal in the synaptic cleft. There is evidence to suggest that homozygous SERT knockout rats (SERT(-/-)), as well as humans with the short SERT allele, show stronger cognitive effects than wild-type control rats (SERT(+/+)) and humans with the long SERT allele after acute tryptophan depletion. In rats, SERT genotype is known to affect brain serotonin levels, with SERT(-/-) rats having lower intracellular basal serotonin levels than wild-type rats in several brain areas. In the present study, it was investigated whether SERT genotype affects memory performance in an object recognition task with different inter-trial intervals. SERT(-/-), heterozygous SERT knockout (SERT(+/-)) and SERT(+/+) rats were tested in an object recognition test applying an inter-trial interval of 2, 4 and 8 h. SERT(-/-) and SERT(+/-) rats showed impaired object memory with an 8 h inter-trial interval, whereas SERT(+/+) rats showed intact object memory with this inter-trial interval. Although brain serotonin levels cannot fully explain the SERT genotype effect on object memory in rats, these results do indicate that serotonin is an important player in object memory in rats, and that lower intracellular serotonin levels lead to enhanced memory loss. Given its resemblance with the human SERT-linked polymorphic region and propensity to develop depression-like symptoms, our findings may contribute to further understanding of mechanisms underlying cognitive deficits in depression.


Assuntos
Química Encefálica/genética , Predisposição Genética para Doença/genética , Transtornos da Memória/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Serotonina/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Transtorno Depressivo/genética , Transtorno Depressivo/metabolismo , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Genótipo , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Ratos , Reconhecimento Psicológico/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
3.
Amino Acids ; 37(2): 349-57, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18683016

RESUMO

The essential amino acid tryptophan is the precursor of the neurotransmitter serotonin. By depleting the body of tryptophan, brain tryptophan and serotonin levels are temporarily reduced. In this paper, several experiments are described in which dose and treatment effects of acute tryptophan depletion (ATD) using a gelatin-based protein-carbohydrate mixture were studied in male and female Wistar rats. Two or three doses of tryptophan depleting mixture resulted in 65-70% depletion after 2-4 h in males. ATD effects were similar in females, although females may return to baseline levels faster. Treatment effects after four consecutive days of ATD were similar to the effects of 1 day of treatment. Object recognition memory was impaired 2, 4, and 6 h after the first of two doses of ATD, suggesting that the central effects occurred rapidly and continued at least 6 h, in spite of decreasing treatment effects on plasma tryptophan levels at that time point. The method of acute tryptophan depletion described here can be used to study the relationship between serotonin and behaviour in both male and female rats.


Assuntos
Gelatina/química , Proteínas , Triptofano/metabolismo , Animais , Comportamento Animal/fisiologia , Carboidratos/química , Feminino , Gelatina/metabolismo , Masculino , Testes Neuropsicológicos , Proteínas/química , Proteínas/metabolismo , Ratos , Ratos Wistar , Reconhecimento Psicológico/fisiologia , Serotonina/metabolismo
4.
Psychopharmacology (Berl) ; 200(2): 243-54, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18542930

RESUMO

RATIONALE: Acute tryptophan depletion (ATD) transiently lowers central serotonin levels and can induce depressive mood states and cognitive defects. Previous studies have shown that ATD impairs object recognition in rats. OBJECTIVES: As individual differences exist in central serotonin neurotransmission, the impact of ATD may vary accordingly. In this experiment, we investigated the hypothesis that male serotonin transporter knockout (SERT(-/-)), rats marked by a lower SERT function, are more vulnerable to the effects of ATD in an object recognition task than male wildtype (SERT(+/+)) and heterozygous (SERT(+/-)) rats. MATERIALS AND METHODS: Twelve male SERT(+/+), SERT(+/-), and SERT(-/-) rats were treated with standard dose and low-dose ATD using a gelatine-based protein-carbohydrate mixture lacking tryptophan. In the control treatment, L: -tryptophan was added to the mixture. Four hours after treatment, the rats were subjected to the object recognition task. In addition, the effects of ATD on plasma amino acid concentrations were measured, and concentrations of 5-HT and 5-HIAA were measured in the frontal cortex and hippocampus of these rats. RESULTS: Plasma TRP levels and central 5-HT and 5-HIAA levels were decreased in all genotypes after ATD, but effects were stronger in SERT(-/-) rats. The standard dose of ATD impaired object recognition in all genotypes. SERT(-/-) and SERT(+/-) rats were more vulnerable to low dose of ATD in the object recognition task compared to SERT(+/+) rats. CONCLUSIONS: These results indicate a greater sensitivity to ATD in SERT(-/-) and SERT(+/-) rats, which may be related to stronger central depletion effects in these rats.


Assuntos
Aminoácidos/deficiência , Transtornos da Memória/etiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Triptofano/deficiência , Animais , Relação Dose-Resposta a Droga , Lobo Frontal/patologia , Técnicas de Inativação de Genes , Genótipo , Hipocampo/patologia , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Ratos , Reconhecimento Psicológico/fisiologia , Serotonina/metabolismo
5.
Neuroscience ; 147(2): 304-17, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17531394

RESUMO

Women are more vulnerable to develop depression and anxiety disorders than men. This may be related to higher serotonergic vulnerability in women. Serotonergic vulnerability entails that differences between people in the regulation of serotonin (5-HT) determine the vulnerability of an individual to develop depression or other 5-HT-related disorders. The aim of the present experiment was to evaluate whether male and female Wistar rats differ in serotonergic vulnerability. Here, a stronger behavioral response to acute tryptophan (TRP) depletion was assumed to reflect serotonergic vulnerability. Twenty-four male and 48 female rats were repeatedly subjected to treatment with a gelatin-based protein-carbohydrate mixture, either with or without L-tryptophan. Female estrous cycle phase was determined by means of vaginal smears and the females were divided into two groups based on their estrous cycle phase: pro-estrus/estrus and met-estrus/di-estrus. Blood samples showed stronger TRP depletion in males than females. There was no effect of estrous cycle on plasma TRP concentrations. In contrast, treatment effects on some brain TRP concentrations were influenced by estrous cycle phase, females in pro-estrus/estrus showed the strongest response to TRP depletion. In the open field test and home cage emergence test, females in pro-estrus/estrus also showed the strongest behavioral response to acute TRP depletion. In general, females showed more activity than males in anxiety-related situations and this effect appeared to be enhanced by TRP depletion. In the social interaction test, passive body contact in males and females in pro-estrus/estrus was decreased after TRP depletion whereas it was increased in females in the met-estrus/di-estrus phase. Acute TRP depletion affected object recognition, but did not affect behavior in the forced swimming test and a reaction time task. It is concluded that sex and estrous cycle phase can influence the behavioral response to TRP depletion, and that females in pro-estrus/estrus show the strongest behavioral response to acute TRP depletion.


Assuntos
Comportamento Animal/fisiologia , Ciclo Estral/fisiologia , Gelatina/farmacologia , Triptofano/deficiência , Aminoácidos/sangue , Animais , Ansiedade/psicologia , Química Encefálica/fisiologia , Depressão/psicologia , Feminino , Relações Interpessoais , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Wistar , Tempo de Reação/fisiologia , Reconhecimento Psicológico/fisiologia , Serotonina/fisiologia , Caracteres Sexuais , Natação/psicologia , Triptofano/fisiologia
6.
Mol Psychiatry ; 12(6): 522-43, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17160067

RESUMO

In recent years, the term serotonergic vulnerability (SV) has been used in scientific literature, but so far it has not been explicitly defined. This review article attempts to elucidate the SV concept. SV can be defined as increased sensitivity to natural or experimental alterations of the serotonergic (5-HTergic) system. Several factors that may disrupt the 5-HTergic system and hence contribute to SV are discussed, including genetic factors, female gender, personality characteristics, several types of stress and drug use. It is explained that SV can be demonstrated by means of manipulations of the 5-HTergic system, such as 5-HT challenges or acute tryptophan depletion (ATD). Results of 5-HT challenge studies and ATD studies are discussed in terms of their implications for the concept of SV. A model is proposed in which a combination of various factors that may compromise 5-HT functioning in one person can result in depression or other 5-HT-related pathology. By manipulating 5-HT levels, in particular with ATD, vulnerable subjects may be identified before pathology initiates, providing the opportunity to take preventive action. Although it is not likely that this model applies to all cases of depression, or is able to identify all vulnerable subjects, the strength of the model is that it may enable identification of vulnerable subjects before the 5-HT related pathology occurs.


Assuntos
Depressão/metabolismo , Transtorno Depressivo/metabolismo , Serotonina/metabolismo , Animais , Meio Ambiente , Feminino , Humanos , Masculino , Modelos Neurológicos , Serotonina/deficiência , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...