Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(5): 3313-3321, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33587632

RESUMO

Combining iron with a tetraamido-macrocyclic ligand (Fe-TAML) as a catalyst and with hydrogen peroxide (H2O2) as the bulk oxidant is a process that has been suggested for the oxidative abatement of micropollutants during water treatment. In this study, the reactivity of the Fe-TAML/H2O2 system was evaluated by investigating the degradation of a group of electron-rich organic model compounds with different functional groups in a secondary wastewater effluent. Phenolic compounds and a polyaromatic ether are quickly and substantially abated by Fe-TAML/H2O2 in a wastewater effluent. For tertiary amines, a moderate rate of abatement was observed. Primary and secondary amines, aromatic ethers, aromatic aldehydes, and olefins are oxidized too slowly in the investigated Fe-TAML/H2O2 systems to be significantly abated in a secondary wastewater effluent. Trichlorophenol is readily oxidized to chloromaleic acid and chlorofumaric acid, which support a one-electron transfer reaction as the initial step of the reaction between Fe-TAML/H2O2 and the target compound. Fe-TAML/H2O2 does not oxidize bromide to hypobromous acid; however, iodide is oxidized to hypoiodous acid, and as a consequence, the H2O2 consumption is accelerated by a catalytic reaction in iodide-containing water. Overall, Fe-TAML/H2O2 is a rather selective oxidant, which makes it an interesting system for the abatement of electron-rich phenolic-type pollutants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Oxirredução , Águas Residuárias
2.
Environ Sci Process Impacts ; 22(4): 1026-1036, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32118215

RESUMO

The reactions of hexabromocyclododecane (HBCD) isomers with Fe(ii) associated with iron oxides were performed in a pH range from 6.15 to 7.50 at room temperature. It was observed that Fe(ii) associated with iron oxides (i.e., goethite, magnetite, hematite) is a better reductant than just an aqueous solution of Fe(ii) to potentially reduce HBCD in subsurface environments. The reaction of HBCD with Fe(ii) associated with iron oxides is also stereoisomer specific with α-HBCD reacting much slower than ß-HBCD and γ-HBCD. The reaction is pH dependent and it is faster with increased pH. The initial concentration of Fe(ii) and HBCD can also affect the reaction rate. The reaction is negligible when all the Fe(ii) is sorbed to magnetite and no Fe(ii) remains dissolved. It was also observed that the reaction of 100 nM HBCD is slower than the reaction of 1.0 µM HBCD with Fe(ii) associated with magnetite. In addition, natural organic matter (NOM) was found to inhibit the degradation of HBCD by Fe(ii) associated with iron oxides.


Assuntos
Compostos Férricos , Hidrocarbonetos Bromados , Ferro , Hidrocarbonetos Bromados/química , Oxirredução , Óxidos , Estereoisomerismo
3.
Chemosphere ; 226: 238-245, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30928716

RESUMO

The individual degradation rates of the three dominant stereoisomers (α, ß, γ) of hexabromocyclododecane (HBCDD) with bisulfide and polysulfides were investigated at pH 9 in methanol/water solutions at two different temperatures (25 °C and 40 °C). Under all conditions investigated, α-HBCDD reacts 10 to 20 times slower with bisulfide than ß-HBCDD and γ-HBCDD. The difference in reactivity of HBCDD isomers can be explained by the different populations of stable conformers with large dihedral angle between the vicinal bromine atoms. It was also observed that the reaction of HBCDD with polysulfides is about six times faster than with bisulfide. The experiments performed in solvent mixtures with increased water content at 40 °C indicated that the reaction of HBCDD with bisulfide is faster with higher percentage of water. The much slower abiotic reaction of α-HBCDD compared to ß-HBCDD and γ-HBCDD could potentially contribute to the fact that α-HBCDD is more persistent in the environment than γ-HBCDD. Only one isomer of tetrabromocyclododecene (TBCDe-5) was identified as a degradation product of the reaction of HBCDD with reduced sulfur species. TBCDe-5 itself reacts about ten times slower with bisulfide and twenty times slower with polysulfide than HBCDD. The study demonstrates that polysulfides and bisulfides can reduce HBCDD sufficiently in natural anoxic environments and the dominant pathway for the degradation of HBCDD by reduced sulfur species is very likely to be the reductive debromination of vicinal dibromides via concerted anti-elimination.


Assuntos
Hidrocarbonetos Bromados/química , Estereoisomerismo , Enxofre/química , Metanol/química , Substâncias Redutoras , Sulfetos/química , Água/química , Poluentes Químicos da Água/análise
4.
J Agric Food Chem ; 66(2): 424-431, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29224357

RESUMO

The mechanism of the reaction of dichlorvos through hydrolysis reactions and through the reaction with polysulfide (Sn2-) and thiophenolate (PhS-) was investigated by proton nuclear magnetic resonance (1H NMR). The study confirmed product identities of an organophosphorus insecticide reacting with reduced sulfur species using 1H NMR in oxygen sensitive solutions. The experiments of dichlorvos with polysulfide led to the detection of a previously undetected product. The thiophenolate experiments were further advanced to investigate second-order rate kinetics using an internal standard. The experiments provide new evidence for a nucleophilic attack by the reduced sulfur species at the methoxy carbon of dichlorvos. In addition, the observation of in situ reaction dynamics illustrates the applicability of 1H NMR spectroscopy toward kinetic investigations in environmental science.


Assuntos
Diclorvós/química , Inseticidas/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Enxofre/química , Cinética , Oxirredução
5.
Chemosphere ; 93(9): 2033-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23948611

RESUMO

Tris(haloalkyl)phosphates (THAPs) are among the most widely used flame retardants in the U.S. They have been identified as one of the most frequently detected contaminants in U.S. streams. These contaminants are of toxicological concern in sensitive coastal ecosystems such as estuaries and salt marshes. It is likely that reactions with reduced sulfur species such as polysulfides (Sn(2-)) and bisulfide (HS(-)), present in anoxic subregions of coastal water bodies could have a significant impact on rates of removal of such contaminants, especially since no significant degradation reactions in the environment (e.g., hydrolysis, biological degradation) is reported for these compounds. The kinetics of the reaction of reduced sulfur species with three structurally related THAPs have been determined in well-defined aqueous solutions under anoxic conditions. Reactions were monitored at varying concentrations of reduced sulfur species to obtain second-order rate constants from the observed pseudo-first order rate constants. The degradation products were studied with GC-FID and LC-MS. The reactivity of Sn(2-), thiophenolate, and HS(-) were compared and steric, as well as electronic factors are used to explain the relative reactivity of the three THAPs with these three sulfur species.


Assuntos
Retardadores de Chama/análise , Compostos Organofosforados/química , Enxofre/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Compostos Organofosforados/análise , Poluentes Químicos da Água/análise
6.
J Environ Monit ; 14(3): 878-85, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22281775

RESUMO

The concentrations of three frequently detected organochlorine pesticides (OCPs) and one degradation product, p,p'-DDT, p,p'-DDD, dieldrin, and p,p'-DDE were determined in recently collected (2005-2006) and archived (1986-1989) surficial sediments and sediment cores from Long Island Sound (LIS). The concentration of dieldrin ranged from 0.05 to 5.27 ng g(-1) dry weight in the surficial sediments, and from 0.05 to 11.7 ng g(-1) dry weight in the sediment cores. Total DDXs (the sum of p,p'-DDE, p,p'-DDD and p,p'-DDT) concentrations ranged from 1.31 to 33.2 ng g(-1) in surficial sediments and 1.11 to 66.4 ng g(-1) in sediment cores. The results indicate that the three OCPs and DDE were still widely present in LIS surficial sediments two decades after the use of these pesticides in the United States was banned. In addition, the surficial concentrations did not decrease significantly when compared to the concentrations in archived samples collected two decades ago. Sediments in the western part of LIS were more contaminated (with concentrations in some western sites being still above probable effect levels) than those in the eastern part, probably as a result of the net westward sediment transport in LIS. The three OCPs and DDE were detected at all depths (down to ~50 cm) in the sediment cores, and concentration profiles indicated a depositional sedimentary environment with significant sediment mixing. Such mixing may redistribute OCPs deposited earlier (deeper in sediment bed) to the sediment surface and lead to enhanced persistence of OCP concentrations in surficial sediments.


Assuntos
DDT/análise , Dieldrin/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , New York , Praguicidas/análise , Água do Mar/química , Poluição Química da Água/estatística & dados numéricos
7.
Chemosphere ; 87(2): 158-62, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22209301

RESUMO

Reactions of hexabromocyclododecane (HBCD), a widely used brominated flame retardant, with reduced sulfur species (e.g., polysulfide and bisulfide) were investigated in well-defined solutions under anoxic conditions. It is likely that reactions of HBCD with reduced sulfur species such as polysulfides and bisulfide present in anoxic subregions of coastal water bodies and sediments could have a significant impact on the fate of HBCD. The second-order reaction rate constant of HBCD with polysulfides in 80% methanol/20% water at 40°C is 2.2 (±0.3)×10(-2) M(-1) s(-1). The second-order reaction rate constant of HBCD with bisulfide is 8.9 (±2.8)×10(-4) M(-1) s(-1) under the same conditions. The formation of two products was observed with either of the two reduced sulfur species. The experiments also indicate that the γ-isomer of HBCD is reacting significantly faster with reduced sulfur species than the α-isomer.


Assuntos
Hidrocarbonetos Bromados/química , Metanol/química , Sulfetos/química , Poluentes Químicos da Água/química , Água/química , Cinética , Modelos Químicos , Soluções
8.
Chemosphere ; 83(7): 941-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21419471

RESUMO

Tris(2-chloroethyl)phosphates (TCEP) is a widely used flame retardant in the US. It has recently been identified as one of the most frequently detected contaminants in US streams. This contaminant is of toxicological concern in sensitive coastal ecosystems such as estuaries and salt marshes. It is likely that reactions with reduced sulfur species such as polysulfides (S(n)(2-)), bisulfide (HS(-)), and thiophenolate (PhS(-)) present in anoxic subregions of coastal water bodies could have a significant impact on rates of removal of such a contaminant. The kinetics of reaction of reduced sulfur species with tris(2-chloroethyl)phosphate have been determined in well-defined aqueous solutions under anoxic conditions. Reactions were monitored at varying concentrations of reduced sulfur species to obtain the second-order rate constants from the observed pseudo-first-order rate constants. The determined second-order rate constant for the reaction of TCEP with polysulfide at 25°C is 5.0 (±1.4)×10(-4) M(-1) s(-1), with thiophenolate at 50°C is 34 (±2)×10(-4) M(-1) s(-1) and with bisulfide at 50°C is 0.9×10(-4) M(-1) s(-1), respectively. In addition, the degradation products of hydrolysis and the reactions with polysulfides, thiophenolate, and bisulfide with TCEP were studied with GC-FID and LC-MS-MS and were quantified.


Assuntos
Retardadores de Chama/análise , Organofosfatos/química , Enxofre/química , Poluentes Químicos da Água/química , Hidrólise , Cinética , Organofosfatos/análise , Água do Mar/química , Sulfetos/análise , Sulfetos/química , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 41(22): 7723-9, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18075080

RESUMO

Concentrations of chlordane, a banned termiticide and pesticide, were examined in recently collected surficial sediment (10 sites) and sediment cores (4 sites) in Long Island Sound (LIS). The highest chlordane concentrations were observed in western LIS, near highly urbanized areas. Chlordane concentrations did not decrease significantly in the past decade when compared to the data collected in 1996, consistent with the observation of near-constant chlordane levels in blue mussel tissues collected during the same time period. Chlordane concentrations in many of the sites exceeded levels above which harmful effects on sediment-dwelling organisms are expected to frequently occur. Chlordane concentrations in two of the four sediment cores showed a peak below the sediment surface, suggesting reduced chlordane inputs in recent years. The lack of a chlordane concentration maximum below the sediment surface in the other two cores, coupled with the lack of a well-defined 137Cs peak, indicated significant sediment mixing. Simulations of 137Cs and 210Pb profiles in sediment cores with a simple sediment-mixing model were used to constrain both the deposition rate and the bioturbation rate of the sediment. Simulations of the chlordane profiles indicated continued chlordane input to LIS long after chlordane was phased out in the U.S. Continued chlordane input and significant sediment mixing may have contributed to the persistent chlordane concentrations in surficial sediment, which poses long-term threats to benthic organisms in LIS.


Assuntos
Radioisótopos de Césio/análise , Clordano/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Radioisótopos de Chumbo/análise , Praguicidas/análise , Animais , Bivalves , Simulação por Computador , Poluentes Ambientais/química , Geografia , Hidrocarbonetos Clorados/análise , New York , Poluentes Químicos da Água
10.
J Agric Food Chem ; 55(9): 3546-54, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17417867

RESUMO

The reactions of phorate and terbufos with bisulfide (HS-), polysulfide (Sn2-), thiosulfate (S2O32-), and thiophenolate (PhS-) were examined in well-defined aqueous solution under anoxic conditions to investigate their role in the degradations of phorate and terbufos. Reactions were monitored at various concentrations of reduced sulfur species to obtain the second-order rate constants. The reactivity of the reduced sulfur species decreased in the order Sn2- > PhS- > HS- > S2O32-. Hydrolysis products, formaldehyde and diethyl disulfide/di-tert-butyl disulfide, indicated that OH-/H2O attacked the carbon atom between the two sulfur atoms, the so-called thioacetal carbon, which is very reactive due to the presence of the two neighboring sulfur atoms. The reaction of phorate and terbufos with PhS- was investigated to study the transformation products in the reactions with reduced sulfur species. The transformation products demonstrated that the observed increase in rate constants in the reaction with reduced sulfur species compared to hydrolysis could result from the nucleophilic attack of reduced sulfur species at the alpha-carbon of the ethoxy group and at the thioacetal carbon atom. The temperature dependence of measured second-order rate constants of the reaction of phorate and terbufos with HS- over 25-50 degrees C was investigated to explore activation parameters, which are not significantly different for phorate and terbufos. All of the observations may imply similar pathways in the degradation of phorate and terbufos in the presence of reduced sulfur species. Slightly higher hydrolysis rates of terbufos and second-order reaction rate constants for the reactions with sulfur species of terbufos compared with those for phorate are observed, which could be attributed to the slightly different substituents.


Assuntos
Inseticidas/química , Compostos Organotiofosforados/química , Oxigênio/análise , Forato/química , Compostos de Enxofre/química , Hidrólise , Cinética , Oxirredução , Soluções
11.
Environ Sci Technol ; 41(5): 1635-40, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17396653

RESUMO

Numerous studies have examined the enantiomeric compositions of trans- and cis-chlordane in soils (agricultural, background, and house foundation soils) and in the atmosphere. In contrast, little is known aboutthe enantiomeric compositions of chlordane in sediment. In this work, surficial sediments and sediment cores were collected at various sites in Long Island Sound (LIS) previously surveyed by the National Oceanic and Atmospheric Administration's (NOAA) National Status and Trends (NS&T) Program. Archived surficial sediments at selected sites were acquired from the NS&T Specimen Bank. The chlordanes were racemic or nearly racemic in most archived and recently collected sediments, indicating thatthe enantiomeric compositions of the sources of chlordane to LIS sediment did not change in the past two decades, and that house foundation soils are likely the major source of chlordanes to LIS. Invariant enantiomeric compositions temporally in surficial sediments and at different depths in sediment cores clearly indicate the lack of enantioselective biodegradation in LIS sediment, in striking contrast to the widely observed enantioselective biodegradation of chlordanes in soils.


Assuntos
Clordano/metabolismo , Sedimentos Geológicos/química , Praguicidas/metabolismo , Microbiologia da Água , Estereoisomerismo
12.
Environ Sci Technol ; 40(18): 5717-23, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17007131

RESUMO

Reactions of dichlorvos with five reduced sulfur species (hydrogen sulfide, bisulfide, thiosulfate, thiophenol, and thiophenolate) were examined in well-defined anoxic aqueous solutions to investigate their role in its degradation. Reactions were monitored at varying concentrations of reduced sulfur species over pH range to obtain the second-order reaction rate constants. Experiments at 25 degrees C demonstrated that degradation of dichlorvos promoted by bisufide, thiosulfate, and thiophenolate were of much greater importance than hydrolysis under the experimental conditions in our study. In contrast, hydrogen sulfide and thiophenol were not effective in the degradation of dichlorvos. The activation parameters of the reaction of dichlorvos with bisulfide, thiosulfate, and thiophenolate were also determined from the measured second-order rate constants over a temperature range of 12-50 degrees C. The relative reactivity of the reduced sulfur species decreases in the following order: PhS- > HS- approximately equal to S2O3(2-). When the second-order rate constants at 25 degrees C are multiplied by the environmentally relevant concentration of the reduced sulfur species, predicted half-lives of dichlorvos ranged from hours to days. The results indicated that reduced sulfur species could play a very important role in the chemical fate of dichlorvos in coastal marine environments.


Assuntos
Diclorvós/química , Compostos de Enxofre/química , Sulfeto de Hidrogênio/química , Cinética , Naled/química , Fenóis/química , Soluções , Compostos de Sulfidrila/química , Sulfitos/química , Tiossulfatos/química , Água/química
13.
J Agric Food Chem ; 54(20): 7753-60, 2006 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17002449

RESUMO

The reactions of thiometon and its ethyl analogue, disulfoton, with reduced sulfur species [e.g., bisulfide (HS-), polysulfide (S(n)2-), thiophenolate (PhS-), and thiosulfate (S2O3(2-))] were examined in well-defined aqueous solutions under anoxic conditions. The role of reduced sulfur species was investigated in the abiotic degradation of thiometon and disulfoton. Experiments at 25 degrees C demonstrated that HS-, S(n)2-, PhS-, and S2O3(2-) promoted the degradation of thiometon to a great extent while only S(n)2- and PhS- showed a small accelerating effect in the degradation of disulfoton. Reactions were monitored at varying concentrations of reduced sulfur species to obtain the second-order rate constants. The reactivity of the reduced sulfur species decreased in the following order: S(n)2- > PhS- > HS- approximately S2O3(2-). Transformation products were confirmed by standards or characterized by gas chromatography mass spectrometry. The results illustrate that multiple pathways occur in the reactions with reduced sulfur species, among which the nucleophilic attack at the alpha-carbon of the alkoxy group was the predominant pathway. Activation parameters of the reaction of thiometon and disulfoton with HS- were also determined from the measured second-order rate constants over a temperature range. DeltaH( not equal) values indicated that the reactivity of thiometon toward HS- was much greater than for disulfoton. Nucleophilic attack at the alkoxy group was more important for thiometon than disulfoton. When the measured second-order rate constants at 25 degrees C are multiplied by [HS-] and Sigma[S(n)2-] reported in saltmarsh porewaters, predicted half-lives show that reduced sulfur species present at environmentally relevant concentrations may present an important sink for thiometon in coastal marine environments.


Assuntos
Dissulfóton/química , Inseticidas/química , Organotiofosfatos/química , Compostos de Enxofre/química , Fenômenos Químicos , Físico-Química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Oxirredução
14.
Environ Sci Technol ; 40(17): 5428-34, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16999121

RESUMO

The reactions of five organophosphorus insecticides (OPs) (chlorpyrifos-methyl, parathion-methyl, fenchlorphos, chlorpyrifos, and parathion) with hydrogensulfide/ bisulfide (H2S/HS-) and polysulfides (S(n)2-) were examined in well-defined aqueous solutions over a pH range from 5 to 9. The rates are first-order in the concentration of the different reduced sulfur species. Experiments at 25 degrees C demonstrated that the reaction of the five OPs with the reduced sulfur species follows a SN2 mechanism. The activation parameters of the reaction of OPs with bisulfide were determined from the measured second-order rate constants over a temperature range of 5-60 degrees C. The determined second-order rate constants show that the reaction of an OP with polysulfides is from 15 to 50 times faster than the reaction of the same OP with bisulfide. The dominant transformation products are desalkyl OPs, which indicate that the nucleophilic substitution of reduced sulfur species occurs at the carbon atom of the alkoxy groups. And also the results show that these reduced sulfur species are much better nucleophiles, and thus degrade these pesticides faster than the well-studied base hydrolysis by OH-. When the determined second-order rate constants are multiplied with the concentration of HS- and S(n)2- reported in salt marshes and porewater of sediments, predicted half-lives show that abiotic degradation by sulfide species may be of comparable importance to microbially mediated degradation in anoxic environments.


Assuntos
Compostos Organotiofosforados/química , Praguicidas/química , Sulfetos/química , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Ésteres , Cromatografia Gasosa-Espectrometria de Massas , Cinética
15.
Environ Sci Technol ; 40(3): 778-83, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16509318

RESUMO

This work examines the reaction of reduced sulfur species (e.g., bisulfide, thiosulfate, thiophenolate) with naled, a registered insecticide, in well-defined anoxic aqueous solutions at 5 degrees C. High concentrations of reduced sulfur species can occur in the porewater of sediments and in anoxic subregions of estuaries. The dominanttransformation product from the reaction of naled with reduced sulfur species is dichlorvos, which indicates that debromination is the major reaction pathway. Dichlorvos is also a registered insecticide which is more toxic than naled. The second-order rate constants for reaction of naled with bisulfide and thiophenolate at 5 degrees C are 10.2 +/- 0.4 M(-1) s(-1) and 27.3 +/- 0.9 M(-1) s(-1), respectively, while the second-order rate constant for the reaction of naled with hydrogen sulfide and thiophenol are not significantly different from zero. The second-order rate constant of the reaction of naled with thiosulfate at 5 degrees C is 5.0 +/- 0.3 M(-1) s(-1). In contrast, the second-order rate constant of the reaction of dichlorvos with bisulfide at 25 degrees C is (3.3 +/- 0.1) x 10(-3) M(-1) s(-1). The activation parameters of the reaction of naled with bisulfide were also determined from the measured second-order rate constants over a temperature range. The results indicate that reduced sulfur species can play a very important role in the transformation of naled and dichlorvos in the coastal marine environment. It can be expected that in the presence of reduced sulfur species, naled is almost immediately transformed into the more toxic dichlorvos, which has an expected half-life of 4 days to weeks.


Assuntos
Diclorvós/química , Inseticidas/química , Naled/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Diclorvós/análise , Monitoramento Ambiental , Sedimentos Geológicos , Meia-Vida , Inseticidas/análise , Cinética , Naled/análise , Oxirredução
16.
Environ Sci Technol ; 40(3): 784-90, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16509319

RESUMO

Chlorpyrifos-methyl is widely used in the control of insects on certain stored grain, including wheat, barley, oats, rice, and sorghum. The reactions of chlorpyrifos-methyl with hydrogensulfide/bisulfide (H2S/HS-), polysulfides (Sn(2-)), thiophenolate (PhS-), and thiosulfate (S2O3(2-)) were examined in well-defined aqueous solutions over a pH range from 5 to 9. The rates are first-order in the concentration of the different reduced sulfur species. The resulting data indicate that chlorpyrifos-methyl undergoes a S(N)2 reaction with the reduced sulfur species. The transformation products indicate that the nucleophilic substitution of reduced sulfur species occurs at the carbon atom of a methoxy group to form the desmethyl chlorpyrifos-methyl. The formation of trichloropyridinol, a minor degradation product, could be attributed entirelyto hydrolysis. The reaction of chlorpyrifos-methyl with thiophenolate leads to the formation of the corresponding methylated sulfur compound. The resulting pseudo-first-order rate constant for chlorpyrifos-methyl with bisulfide yielded a second-order rate constant of 2.2 (+/- 0.1) x 10(-3) M(-1) s(-1). The determined second-order rate constants show that the reaction of chlorpyrifos-methyl with HS- is of the same order of magnitude as the reaction of chlorpyrifos-methyl with S2O3(2-) with a second-order rate constant of 1.0 (+/- 0.1) x 10(-3) M(-1) s(-1). The second-order rate constant for chlorpyrifos-methyl with polysulfides (3.1 (+/- 0.3) x 10(-2) M(-1) s(-1)) is of the same order of magnitude as the one with thiophenolate (2.1 (+/- 0.2) x 10(-2) M(-1) s(-1)). The second-order rate constant for the reaction of polysulfides is approximately 1 order of magnitude greater than that for the reaction with HS-. When the determined second-order rate constants are multiplied by the concentration of HS-, polysulfides and thiosulfate reported in salt marshes and porewaters, predicted half-lives show that the inorganic reduced sulfur species present at environmentally relevant concentrations may represent an important sink for phosphorothionate triesters in coastal marine environments.


Assuntos
Clorpirifos/análogos & derivados , Inseticidas/química , Enxofre/química , Clorpirifos/química , Sedimentos Geológicos/química , Meia-Vida , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
17.
Environ Sci Technol ; 40(3): 900-6, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16509335

RESUMO

The kinetics of the transformation of methyl parathion have been investigated in aqueous solution containing reduced sulfur species and small concentrations of natural organic matter (NOM) from different sources such as soil, river, and peat. It was shown that NOM mediates the degradation of methyl parathion in aqueous solutions containing hydrogen sulfide. After evaluating and quantifying the effect of the NOM concentration on the degradation kinetics of methyl parathion in the presence of hydrogen sulfide, it was found that the observed pseudo-first-order reaction rate constants (k(obs)) were proportional to NOM concentrations. The influence of pH on the degradation of methyl parathion in the aqueous solutions containing hydrogen sulfide and NOM has been studied. The rate of degradation of methyl parathion was strongly pH dependent. The results indicate k(obs) with a commercially available humic acid has a maximum value at approximately pH 8.3. Two main reaction mechanisms are identified to dominate the degradation of methyl parathion in aqueous solution containing hydrogen sulfide and NOM based on the products aminomethyl parathion and desmethyl methyl parathion. The two mechanisms are nitro-group reduction and nucleophilic attack at the methoxy-carbon. The reduction of the nitro-group is only observed in the presence of NOM. The results of this study form an important base for the evaluation and interpretation of transformation processes of methyl parathion in the environment.


Assuntos
Sulfeto de Hidrogênio/química , Inseticidas/química , Metil Paration/química , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água
18.
J Agric Food Chem ; 51(7): 1956-60, 2003 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-12643658

RESUMO

The kinetics of the reactions of chlorpyrifos-methyl, an organophosphorus insecticide, with hydrogen sulfide (H(2)S) and bisulfide (HS(-)) were determined in well-defined aqueous solutions. The resulting pseudo-first-order rate constant for chlorpyrifos-methyl with bisulfide yielded a second-order rate constant of (2.1 +/- 0.3) x 10(-3) M(-1) s(-1). The second-order rate constant for chlorpyrifos-methyl with hydrogen sulfide is significantly slower than the second-order rate constant with bisulfide. The contribution of H(2)S to the observed degradation rate constant of chlorpyrifos-methyl at concentrations of up to 4 mM H(2)S is not significant. The second-order rate constant of chlorpyrifos-methyl with H(2)S was too low to be measured in this study. The results indicate that HS(-) present at environmentally relevant concentrations may represent an important sink for phosphorothionate triesters in a coastal marine environment, while H(2)S reacts too slowly to be environmentally relevant (pH 6-9). Trichloropyridinol, the major product of hydrolysis of chlorpyrifos-methyl, is only a minor product of the reaction of chlorpyrifos-methyl with bisulfide; however, trichloropyridinol was found to be stable under the experimental conditions.


Assuntos
Clorpirifos/análogos & derivados , Clorpirifos/química , Sulfeto de Hidrogênio/química , Inseticidas/química , Água , Hidrólise , Cinética , Poluentes do Solo/análise , Soluções , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...