Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928443

RESUMO

This paper presents the work performed to transition a lab-scale synthesis (1 g) to a large-scale (400 g) synthesis of the 3-5-diamino-1H-Pyrazole Disperazol, a new pharmaceutical for treatment of antibiotic-resistant Pseudomonas aeruginosa biofilm infections. The potentially hazardous diazotisation step in the lab-scale synthesis was transformed to a safe and easy-to-handle flow chemistry step. Additionally, the paper presents an OSHA-recommended safety assessment of active compound E, as performed by Fauske and Associates, LLC, Burr Ridge, IL, USA.


Assuntos
Pseudomonas aeruginosa , Pirazóis , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Medição de Risco
2.
Antimicrob Agents Chemother ; : e0148123, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717093

RESUMO

Persistent urinary tract infections (UTIs) in hospitalized patients constitute an important medical problem. It is estimated that 75% of nosocomial UTIs are associated with urinary tract catheters with P. aeruginosa being a species that forms biofilms on these catheters. These infections are highly resistant to standard-of-care antibiotics, and the effects of the host immune defenses, which allows for development of persistent infections. With antibiotics losing their efficacy, new treatment options against resilient infections, such as catheter-associated urinary tract infections (CAUTIs), are critically needed. Central to our anti-biofilm approach is the manipulation of the c-di-GMP signaling pathway in P. aeruginosa to switch bacteria from the protective biofilm to the unprotected planktonic mode of life. We recently identified a compound (H6-335-P1), that stimulates the c-di-GMP degrading activity of the P. aeruginosa BifA protein which plummets the intracellular c-di-GMP content and induces dispersal of P. aeruginosa biofilm bacteria into the planktonic state. In the present study, we formulated H6-335-P1 as a hydrochloride salt (Disperazol), which is water-soluble and facilitates delivery via injection or oral administration. Disperazol can work as a monotherapy, but we observed a 100-fold improvement in efficacy when treating murine P. aeruginosa CAUTIs with a Disperazol/ciprofloxacin combination. Biologically active Disperazol reached the bladder 30 min after oral administration. Our study provides proof of concept that Disperazol can be used in combination with a relevant antibiotic for effective treatment of CAUTIs.

3.
Nat Commun ; 15(1): 1489, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413572

RESUMO

Blue denim, a billion-dollar industry, is currently dyed with indigo in an unsustainable process requiring harsh reducing and alkaline chemicals. Forming indigo directly in the yarn through indican (indoxyl-ß-glucoside) is a promising alternative route with mild conditions. Indican eliminates the requirement for reducing agent while still ending as indigo, the only known molecule yielding the unique hue of blue denim. However, a bulk source of indican is missing. Here, we employ enzyme and process engineering guided by techno-economic analyses to develop an economically viable drop-in indican synthesis technology. Rational engineering of PtUGT1, a glycosyltransferase from the indigo plant, alleviated the severe substrate inactivation observed with the wildtype enzyme at the titers needed for bulk production. We further describe a mild, light-driven dyeing process. Finally, we conduct techno-economic, social sustainability, and comparative life-cycle assessments. These indicate that the presented technologies have the potential to significantly reduce environmental impacts from blue denim dyeing with only a modest cost increase.


Assuntos
Indicã , Índigo Carmim , Corantes , Plantas , Meio Ambiente
4.
Antimicrob Agents Chemother ; 68(2): e0138723, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38189278

RESUMO

The cell-to-cell communication system quorum sensing (QS), used by various pathogenic bacteria to synchronize gene expression and increase host invasion potentials, is studied as a potential target for persistent infection control. To search for novel molecules targeting the QS system in the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, a chemical library consisting of 3,280 small compounds from LifeArc was screened. A series of 10 conjugated phenones that have not previously been reported to target bacteria were identified as inhibitors of QS in P. aeruginosa. Two lead compounds (ethylthio enynone and propylthio enynone) were re-synthesized for verification of activity and further elucidation of the mode of action. The isomeric pure Z-ethylthio enynone was used for RNA sequencing, revealing a strong inhibitor of QS-regulated genes, and the QS-regulated virulence factors rhamnolipid and pyocyanin were significantly decreased by treatment with the compounds. A transposon mutagenesis screen performed in a newly constructed lasB-gfp monitor strain identified the target of Z-ethylthio enynone in P. aeruginosa to be the MexEF-OprN efflux pump, which was further established using defined mex knockout mutants. Our data indicate that the QS inhibitory capabilities of Z-ethylthio enynone were caused by the drainage of intracellular signal molecules as a response to chemical-induced stimulation of the MexEF-oprN efflux pump, thereby inhibiting the autogenerated positive feedback and its enhanced signal-molecule synthesis.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/genética , Percepção de Quorum/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética
5.
J Org Chem ; 88(13): 8669-8673, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37294812

RESUMO

A convergent total synthesis of the natural mycobacterial iron chelator desferri-exochelin 772SM (D-EXO) is described. The synthetic procedure proceeds in 11 steps in the longest linear sequence, with an overall yield of 8.6%. The described procedure uses cheap starting materials and requires a limited number of chromatographic purifications. The concise strategy divides the exochelin into five key building blocks, allowing easy alternation of each single building block. Herein, the presented synthetic strategy is well suited to facilitate the synthesis of analogues and medicinal chemistry development efforts in a time- and resource-efficient manner.


Assuntos
Quelantes de Ferro , Mycobacterium , Peptídeos Cíclicos/química
6.
Colloids Surf B Biointerfaces ; 220: 112941, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36270138

RESUMO

Multi-functional small molecules attached to an electrode surface can bind non-covalently to the redox enzyme fructose dehydrogenase (FDH) to ensure efficient electrochemical electron transfer (ET) and electrocatalysis of the enzyme in both mediated (MET) and direct (DET) ET modes. The present work investigates the potential of exploiting secondary, electrostatic and hydrophobic interactions between substituents on a small molecular bridge and the local FDH surfaces. Such interactions ensure alignment of the enzyme in an orientation favourable for both MET and DET. We have used a group of novel synthesized anthraquinones as the small molecule bridge, functionalised with electrostatically neutral, anionic, or cationic substituents. Particularly, we investigated the immobilisation of FDH on a nanoporous gold (NPG) electrode decorated with the novel synthesised anthraquinones using electrochemical methods. The best DET-capable fraction out of four anthraquinone derivatives tested is achieved for an anthraquinone functionalised with an anionic sulphonate group. Our study demonstrates, how the combination of chemical design and bioelectrochemistry can be brought to control alignment of enzymes in productive orientations on electrodes, a paradigm for thiol modified surfaces in biosensors and bioelectronics.


Assuntos
Técnicas Biossensoriais , Desidrogenases de Carboidrato , Antraquinonas , Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/metabolismo , Eletrodos , Transporte de Elétrons , Elétrons , Enzimas Imobilizadas/química , Frutose/química , Frutose/metabolismo
7.
NPJ Biofilms Microbiomes ; 7(1): 59, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244523

RESUMO

Microbial biofilms are involved in a number of infections that cannot be cured, as microbes in biofilms resist host immune defenses and antibiotic therapies. With no strict biofilm-antibiotic in the current pipelines, there is an unmet need for drug candidates that enable the current antibiotics to eradicate bacteria in biofilms. We used high-throughput screening to identify chemical compounds that reduce the intracellular c-di-GMP content in Pseudomonas aeruginosa. This led to the identification of a small molecule that efficiently depletes P. aeruginosa for c-di-GMP, inhibits biofilm formation, and disperses established biofilm. A combination of our lead compound with standard of care antibiotics showed improved eradication of an implant-associated infection established in mice. Genetic analyses provided evidence that the anti-biofilm compound stimulates the activity of the c-di-GMP phosphodiesterase BifA in P. aeruginosa. Our work constitutes a proof of concept for c-di-GMP phosphodiesterase-activating drugs administered in combination with antibiotics as a viable treatment strategy for otherwise recalcitrant infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antibacterianos/química , Cromatografia Líquida de Alta Pressão , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Espectrometria de Massas em Tandem , Transcriptoma
8.
Front Chem ; 7: 742, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737611

RESUMO

Microbial biofilms are the cause of persistent infections associated with various medical implants and distinct body sites such as the urinary tract, lungs, and wounds. Compared with their free living counterparts, bacteria in biofilms display a highly increased resistance to immune system activities and antibiotic treatment. Therefore, biofilm infections are difficult or impossible to treat with our current armory of antibiotics. The challenges associated with biofilm infections have urged researchers to pursue a better understanding of the molecular mechanisms that are involved in the formation and dispersal of biofilms, and this has led to the identification of several steps that could be targeted in order to eradicate these challenging infections. Here we describe mechanisms that are involved in the regulation of biofilm development in Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii, and provide examples of chemical compounds that have been developed to specifically inhibit these processes. These compounds include (i) pilicides and curlicides which inhibit the initial steps of biofilm formation by E. coli; (ii) compounds that interfere with c-di-GMP signaling in P. aeruginosa and E. coli; and (iii) compounds that inhibit quorum-sensing in P. aeruginosa and A. baumannii. In cases where compound series have a defined molecular target, we focus on elucidating structure activity relationship (SAR) trends within the particular compound series.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...