Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(4): 1583-1590, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665651

RESUMO

Growth-based selections evaluate the fitness of individual organisms at a population level. In enzyme engineering, such growth selections allow for the rapid and straightforward identification of highly efficient biocatalysts from extensive libraries. However, selection-based improvement of (synthetically useful) biocatalysts is challenging, as they require highly dependable strategies that artificially link their activities to host survival. Here, we showcase a robust and scalable growth-based selection platform centered around the complementation of noncanonical amino acid-dependent bacteria. Specifically, we demonstrate how serial passaging of populations featuring millions of carbamoylase variants autonomously selects biocatalysts with up to 90,000-fold higher initial rates. Notably, selection of replicate populations enriched diverse biocatalysts, which feature distinct amino acid motifs that drastically boost carbamoylase activity. As beneficial substitutions also originated from unintended copying errors during library preparation or cell division, we anticipate that our growth-based selection platform will be applicable to the continuous, autonomous evolution of diverse biocatalysts in the future.

2.
Angew Chem Int Ed Engl ; 62(2): e202213942, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36342942

RESUMO

In vivo selections are powerful tools for the directed evolution of enzymes. However, the need to link enzymatic activity to cellular survival makes selections for enzymes that do not fulfill a metabolic function challenging. Here, we present an in vivo selection strategy that leverages recoded organisms addicted to non-canonical amino acids (ncAAs) to evolve biocatalysts that can provide these building blocks from synthetic precursors. We exemplify our platform by engineering carbamoylases that display catalytic efficiencies more than five orders of magnitude higher than those observed for the wild-type enzyme for ncAA-precursors. As growth rates of bacteria under selective conditions correlate with enzymatic activities, we were able to elicit improved variants from populations by performing serial passaging. By requiring minimal human intervention and no specialized equipment, we surmise that our strategy will become a versatile tool for the in vivo directed evolution of diverse biocatalysts.


Assuntos
Aminoácidos , Bactérias , Humanos , Aminoácidos/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...