Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 12(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28762642

RESUMO

Clostridium beijerinckii is a predominant solventogenic bacterium that is used for the ABE fermentation. Various C. beijerinckii mutants are constructed for desirable phenotypes. The C. beijerinckii mutant BA105 harboring a glucose derepression phenotype was previously isolated and demonstrated the enhanced amylolytic activity in the presence of glucose. Despite its potential use, BA105 is not further characterized and utilized. Therefore, the authors investigate fermentation phenotypes of BA105 in this study. Under the typical batch fermentation conditions, BA105 consistently exhibits acid crash phenotype resulting in limited glucose uptake and cell growth. However, when the culture pH is maintained above 5.5, BA105 exhibits the increased glucose uptake and butanol production than did the wild-type. To further analyze BA105, the authors perform genome sequencing and RNA sequencing. Genome analysis identifies two SNPs unique to BA105, in the upstream region of AbrB regulator (Cbei_4885) and the ROK family glucokinase (Cbei_4895) which are involved in catabolite repression and regulation of sugar metabolism. Transcriptional analysis of BA105 reveals significant differential expression of the genes associated with the PTS sugar transport system and acid production. This study improves understanding of the acid crash phenomenon and provides the genetic basis underlying the catabolite derepression phenotype of C. beijericnkii.


Assuntos
Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Glucose/metabolismo , Mutação/genética , Acetona/metabolismo , Álcoois/metabolismo , Fermentação , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Genômica , Concentração de Íons de Hidrogênio , Mutação/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
2.
Appl Microbiol Biotechnol ; 98(21): 9059-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25149445

RESUMO

The hetero-dimeric CoA-transferase CtfA/B is believed to be crucial for the metabolic transition from acidogenesis to solventogenesis in Clostridium acetobutylicum as part of the industrial-relevant acetone-butanol-ethanol (ABE) fermentation. Here, the enzyme is assumed to mediate re-assimilation of acetate and butyrate during a pH-induced metabolic shift and to faciliate the first step of acetone formation from acetoacetyl-CoA. However, recent investigations using phosphate-limited continuous cultures have questioned this common dogma. To address the emerging experimental discrepancies, we investigated the mutant strain Cac-ctfA398s::CT using chemostat cultures. As a consequence of this mutation, the cells are unable to express functional ctfA and are thus lacking CoA-transferase activity. A mathematical model of the pH-induced metabolic shift, which was recently developed for the wild type, is used to analyse the observed behaviour of the mutant strain with a focus on re-assimilation activities for the two produced acids. Our theoretical analysis reveals that the ctfA mutant still re-assimilates butyrate, but not acetate. Based upon this finding, we conclude that C. acetobutylicum possesses a CoA-tranferase-independent butyrate uptake mechanism that is activated by decreasing pH levels. Furthermore, we observe that butanol formation is not inhibited under our experimental conditions, as suggested by previous batch culture experiments. In concordance with recent batch experiments, acetone formation is abolished in chemostat cultures using the ctfa mutant.


Assuntos
Butiratos/metabolismo , Clostridium acetobutylicum/metabolismo , Coenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Deleção de Genes , Concentração de Íons de Hidrogênio , Modelos Teóricos , Mutagênese Insercional
3.
Appl Environ Microbiol ; 79(19): 5853-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872562

RESUMO

Clostridium beijerinckii is a well-known solvent-producing microorganism with great potential for biofuel and biochemical production. To better understand and improve the biochemical pathway to solvents, the development of genetic tools for engineering C. beijerinckii is highly desired. Based on mobile group II intron technology, a targetron gene knockout system was developed for C. beijerinckii in this study. This system was successfully employed to disrupt acid production pathways in C. beijerinckii, leading to pta (encoding phosphotransacetylase)- and buk (encoding butyrate kinase)-negative mutants. In addition to experimental characterization, the mutant phenotypes were analyzed in the context of our C. beijerinckii genome-scale model. Compared to those of the parental strain (C. beijerinckii 8052), acetate production in the pta mutant was substantially reduced and butyrate production was remarkably increased, while solvent production was dependent on the growth medium. The pta mutant also produced much higher levels of lactate, suggesting that disrupting pta influenced the energy generation and electron flow pathways. In contrast, acetate and butyrate production in the buk mutant was generally similar to that of the wild type, but solvent production was consistently 20 to 30% higher and glucose consumption was more rapid and complete. Our results suggest that the acid and solvent production of C. beijerinckii can be effectively altered by disrupting the acid production pathways. As the gene disruption method developed in this study does not leave any antibiotic marker in a disrupted allele, multiple and high-throughput gene disruption is feasible for elucidating genotype and phenotype relationships in C. beijerinckii.


Assuntos
Ácidos Carboxílicos/metabolismo , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Técnicas de Inativação de Genes/métodos , Íntrons , Redes e Vias Metabólicas/genética , Meios de Cultura/química , Engenharia Metabólica/métodos , Solventes/metabolismo
4.
Appl Microbiol Biotechnol ; 97(14): 6451-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640360

RESUMO

In response to changing extracellular pH levels, phosphate-limited continuous cultures of Clostridium acetobutylicum reversibly switches its metabolism from the dominant formation of acids to the prevalent production of solvents. Previous experimental and theoretical studies have revealed that this pH-induced metabolic switch involves a rearrangement of the intracellular transcriptomic, proteomic and metabolomic composition of the clostridial cells. However, the influence of the population dynamics on the observations reported has so far been neglected. Here, we present a method for linking the pH shift, clostridial growth and the acetone-butanol-ethanol fermentation metabolic network systematically into a model which combines the dynamics of the external pH and optical density with a metabolic model. Furthermore, the recently found antagonistic expression pattern of the aldehyde/alcohol dehydrogenases AdhE1/2 and pH-dependent enzyme activities have been included into this combined model. Our model predictions reveal that the pH-induced metabolic shift under these experimental conditions is governed by a phenotypic switch of predominantly acidogenic subpopulation towards a predominantly solventogenic subpopulation. This model-driven explanation of the pH-induced shift from acidogenesis to solventogenesis by population dynamics casts an entirely new light on the clostridial response to changing pH levels. Moreover, the results presented here underline that pH-dependent growth and pH-dependent specific enzymatic activity play a crucial role in this adaptation. In particular, the behaviour of AdhE1 and AdhE2 seems to be the key factor for the product formation of the two phenotypes, their pH-dependent growth, and thus, the pH-induced metabolic switch in C. acetobutylicum.


Assuntos
Clostridium acetobutylicum/metabolismo , Meios de Cultura/química , Fosfatos/metabolismo , Acetona/metabolismo , Ácidos/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/química , Clostridium acetobutylicum/crescimento & desenvolvimento , Meios de Cultura/metabolismo , Etanol/metabolismo , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Fenótipo
5.
Microb Biotechnol ; 6(5): 526-39, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23332010

RESUMO

In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone-butanol-ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/efeitos dos fármacos , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Clostridium acetobutylicum/genética , Fermentação , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Metabolismo/efeitos dos fármacos , Modelos Teóricos
6.
Microbiology (Reading) ; 158(Pt 7): 1918-1929, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22556358

RESUMO

Iron is a nutrient of critical importance for the strict anaerobe Clostridium acetobutylicum, as it is involved in numerous basic cellular functions and metabolic pathways. A gene encoding a putative ferric uptake regulator (Fur) has been identified in the genome of C. acetobutylicum. In this work, we inactivated the fur gene by using insertional mutagenesis. The resultant mutant showed a slow-growing phenotype and enhanced sensitivity to oxidative stress, but essentially no dramatic change in its fermentation pattern. A unique feature of its physiology was the overflowing production of riboflavin. To gain further insights into the role of the Fur protein and the mechanisms for establishment of iron balance in C. acetobutylicum, we characterized and compared the gene-expression profile of the fur mutant and the iron-limitation stimulon of the parental strain. Not surprisingly, a repertoire of iron-transport systems was upregulated in both microarray datasets, suggesting that they are regulated by Fur according to the availability of iron. In addition, iron limitation and inactivation of fur affected the expression of several genes involved in energy metabolism. Among them, two genes, encoding a lactate dehydrogenase and a flavodoxin, were highly induced. In order to support the function of the latter, the ribDBAH operon responsible for riboflavin biosynthesis was also upregulated significantly. Furthermore, the iron-starvation response of C. acetobutylicum involved transcriptional modifications that were not detected in the fur mutant, suggesting that there exist additional mechanisms for adaptation to low-iron environments. Collectively, these results demonstrate that the strict anaerobe C. acetobutylicum senses and responds to availability of iron on multiple levels using a sophisticated system, and that Fur plays an important role in this process.


Assuntos
Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Ferro/metabolismo , Proteínas Repressoras/deficiência , Anaerobiose , Proteínas de Bactérias , Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/fisiologia , Perfilação da Expressão Gênica , Análise em Microsséries , Mutagênese Insercional , Estresse Oxidativo , Riboflavina/metabolismo
7.
J Biotechnol ; 161(3): 354-65, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-22537853

RESUMO

The main product of the anaerobic fermentative bacterium Clostridium acetobutylicum is n-butanol, an organic solvent with severe toxic effects on the cells. Therefore, the identification of the molecular factors related to n-butanol stress constitutes a major strategy for furthering the understanding of the biotechnological production of n-butanol, an important industrial biofuel. Previous reports concerning n-butanol stress in C. acetobutylicum dealt exclusively with batch cultures. In this study, for the first time a comprehensive transcriptional analysis of n-butanol-stressed C. acetobutylicum was conducted using stable steady state acidogenic chemostat cultures. A total of 358 differentially expressed genes were significantly affected by n-butanol stress. Similarities, such as the upregulation of general stress genes, and differences in gene expression were compared in detail with earlier DNA microarrays performed in batch cultivation experiments. The main result of this analysis was the observation that genes involved in amino acid and nucleotide biosynthesis, as well as genes for specific transport systems were upregulated by n-butanol. Our results exclude any transcriptional response triggered by exogenous pH changes or solventogenic n-butanol formation. Finally, our data suggest that metabolic flux through the glycerolipid biosynthetic pathway increases, confirming that C. acetobutylicum modifies the cytoplasmic membrane composition in response to n-butanol stress.


Assuntos
1-Butanol/farmacologia , Ácidos/metabolismo , Reatores Biológicos/microbiologia , Clostridium acetobutylicum/genética , Solventes/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Técnicas de Cultura Celular por Lotes , Clostridium acetobutylicum/citologia , Clostridium acetobutylicum/efeitos dos fármacos , Clostridium acetobutylicum/crescimento & desenvolvimento , Análise por Conglomerados , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Glicolipídeos/metabolismo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
8.
N Biotechnol ; 29(4): 485-93, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22285530

RESUMO

Artificial electron carriers have been widely used to shift the solvent ratio toward butanol in acetone-butanol-ethanol (ABE) fermentation of solventogenic clostridia according to decreased hydrogen production. In this study, first insights on the molecular level were gained to explore the effect of methyl viologen addition to cultures of Clostridium acetobutylicum. Employing batch fermentation in mineral salts medium, the butanol:acetone ratio was successively increased from 2.3 to 12.4 on a 100-ml scale in serum bottles and from 1.4 to 16.5 on a 1300-ml scale in bioreactors, respectively. The latter cultures were used for DNA microarray analyses to provide new information on the transcriptional changes referring to methyl viologen exposure and thus, exhibit gene expression patterns according to the manipulation of the cellular redox balance. Methyl viologen-exposed cultures revealed lower expression levels of the sol operon (CAP0162-0164) and the adjacent adc gene (CAP0165) responsible for solvent formation as well as iron and sulfate transporters and the CAC0105-encoded ferredoxin. On the contrary, genes for riboflavin biosynthesis, for the butyrate/butanol metabolic pathway and genes coding for sugar transport systems were induced. Interestingly, the adhE2-encoded bifunctional NADH-dependent aldhehyde/alcohol-dehydrogenase (CAP0035) was upregulated up to more than 100-fold expression levels as compared to the control culture without methyl viologen addition. The data presented here indicate a transcriptional regulation for decreased acetone biosynthesis and the redox-dependent substitution of adhE1 (CAP0162) by adhE2.


Assuntos
Acetona/metabolismo , Proteínas de Bactérias/genética , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Proteínas de Bactérias/metabolismo , Clostridium acetobutylicum/efeitos dos fármacos , Fermentação/efeitos dos fármacos , Perfilação da Expressão Gênica , Transporte de Íons , Análise de Sequência com Séries de Oligonucleotídeos , Paraquat/farmacologia , Riboflavina/biossíntese , Riboflavina/genética , Regulação para Cima/efeitos dos fármacos
9.
BMC Syst Biol ; 5: 10, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21247470

RESUMO

BACKGROUND: Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. RESULTS: We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7) acids are the dominant product while at low pH (pH 4.5) this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. CONCLUSIONS: Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required.


Assuntos
Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Regulação Bacteriana da Expressão Gênica , Solventes/metabolismo , Biologia de Sistemas/métodos , Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/crescimento & desenvolvimento , Técnicas de Cultura , Fermentação , Engenharia Genética , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas/genética , Metabolômica , Modelos Biológicos , Proteômica
10.
J Mol Microbiol Biotechnol ; 20(1): 1-15, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21212688

RESUMO

Clostridium acetobutylicum is able to switch from acidogenic growth to solventogenic growth. We used phosphate-limited continuous cultures that established acidogenic growth at pH 5.8 and solventogenic growth at pH 4.5. These cultures allowed a detailed transcriptomic study of the switch from acidogenesis to solventogenesis that is not superimposed by sporulation and other growth phase-dependent parameters. These experiments led to new insights into the physiological role of several genes involved in solvent formation. The adc gene for acetone decarboxylase is upregulated well before the rest of the sol locus during the switch, and pyruvate decarboxylase is induced exclusively for the period of this switch. The aldehyde-alcohol dehydrogenase gene adhE1 located in the sol operon is regulated antagonistically to the paralog adhE2 that is expressed during acidogenic conditions. A similar antagonistic pattern can be seen with the two paralogs of thiolase genes, thlA and thlB. Interestingly, the genes coding for the putative cellulosome in C. acetobutylicum are exclusively transcribed throughout solventogenic growth. The genes for stress response are only induced during the shift but not in the course of solventogenesis when butanol is present in the culture. Finally, the data clearly indicate that solventogenesis is independent from sporulation.


Assuntos
Ácidos Carboxílicos/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Solventes/metabolismo , Álcool Desidrogenase/metabolismo , Butanóis/metabolismo , Celulossomas/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas/genética , Análise em Microsséries , Piruvato Descarboxilase/metabolismo
11.
Appl Microbiol Biotechnol ; 87(6): 2209-26, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20617312

RESUMO

The complex changes in the life cycle of Clostridium acetobutylicum, a promising biofuel producer, are not well understood. During exponential growth, sugars are fermented to acetate and butyrate, and in the transition phase, the metabolism switches to the production of the solvents acetone and butanol accompanied by the initiation of endospore formation. Using phosphate-limited chemostat cultures at pH 5.7, C. acetobutylicum was kept at a steady state of acidogenic metabolism, whereas at pH 4.5, the cells showed stable solvent production without sporulation. Novel proteome reference maps of cytosolic proteins from both acidogenesis and solventogenesis with a high degree of reproducibility were generated. Yielding a 21% coverage, 15 protein spots were specifically assigned to the acidogenic phase, and 29 protein spots exhibited a significantly higher abundance in the solventogenic phase. Besides well-known metabolic proteins, unexpected proteins were also identified. Among these, the two proteins CAP0036 and CAP0037 of unknown function were found as major striking indicator proteins in acidogenic cells. Proteome data were confirmed by genome-wide DNA microarray analyses of the identical cultures. Thus, a first systematic study of acidogenic and solventogenic chemostat cultures is presented, and similarities as well as differences to previous studies of batch cultures are discussed.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Proteômica , Transcrição Gênica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butiratos/metabolismo , Clostridium acetobutylicum/química , Clostridium acetobutylicum/crescimento & desenvolvimento , Técnicas de Cultura , Eletroforese em Gel Bidimensional , Fermentação , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...