Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(5): 2740-2757, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38321963

RESUMO

Prime editors have high potential for disease modelling and regenerative medicine efforts including those directed at the muscle-wasting disorder Duchenne muscular dystrophy (DMD). However, the large size and multicomponent nature of prime editing systems pose substantial production and delivery issues. Here, we report that packaging optimized full-length prime editing constructs in adenovector particles (AdVPs) permits installing precise DMD edits in human myogenic cells, namely, myoblasts and mesenchymal stem cells (up to 80% and 64%, respectively). AdVP transductions identified optimized prime-editing reagents capable of correcting DMD reading frames of ∼14% of patient genotypes and restoring dystrophin synthesis and dystrophin-ß-dystroglycan linkages in unselected DMD muscle cell populations. AdVPs were equally suitable for correcting DMD iPSC-derived cardiomyocytes and delivering dual prime editors tailored for DMD repair through targeted exon 51 deletion. Moreover, by exploiting the cell cycle-independent AdVP transduction process, we report that 2- and 3-component prime-editing modalities are both most active in cycling than in post-mitotic cells. Finally, we establish that combining AdVP transduction with seamless prime editing allows for stacking chromosomal edits through successive delivery rounds. In conclusion, AdVPs permit versatile investigation of advanced prime editing systems independently of their size and component numbers, which should facilitate their screening and application.


Assuntos
Distrofina , Terapia Genética , Distrofia Muscular de Duchenne , Humanos , Sistemas CRISPR-Cas/genética , Distrofina/genética , Distrofina/metabolismo , Edição de Genes , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Mioblastos/metabolismo , Miócitos Cardíacos/metabolismo
2.
Nucleic Acids Res ; 51(7): 3465-3484, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36928106

RESUMO

Homology-directed recombination (HDR) between donor constructs and acceptor genomic sequences cleaved by programmable nucleases, permits installing large genomic edits in mammalian cells in a precise fashion. Yet, next to precise gene knock-ins, programmable nucleases yield unintended genomic modifications resulting from non-homologous end-joining processes. Alternatively, in trans paired nicking (ITPN) involving tandem single-strand DNA breaks at target loci and exogenous donor constructs by CRISPR-Cas9 nickases, fosters seamless and scarless genome editing. In the present study, we identified high-specificity CRISPR-Cas9 nucleases capable of outperforming parental CRISPR-Cas9 nucleases in directing genome editing through homologous recombination (HR) and homology-mediated end joining (HMEJ) with donor constructs having regular and 'double-cut' designs, respectively. Additionally, we explored the ITPN principle by demonstrating its compatibility with orthogonal and high-specificity CRISPR-Cas9 nickases and, importantly, report that in human induced pluripotent stem cells (iPSCs), in contrast to high-specificity CRISPR-Cas9 nucleases, neither regular nor high-specificity CRISPR-Cas9 nickases activate P53 signaling, a DNA damage-sensing response linked to the emergence of gene-edited cells with tumor-associated mutations. Finally, experiments in human iPSCs revealed that differently from HR and HMEJ genome editing based on high-specificity CRISPR-Cas9 nucleases, ITPN involving high-specificity CRISPR-Cas9 nickases permits editing allelic sequences associated with essentiality and recurrence in the genome.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Edição de Genes/métodos , Genômica , Células-Tronco Pluripotentes Induzidas , Mamíferos
3.
Mol Ther Nucleic Acids ; 31: 746-762, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36937620

RESUMO

Genome editing based on dual CRISPR-Cas9 complexes (multiplexes) permits removing specific genomic sequences in living cells leveraging research on functional genomics and genetic therapies. Delivering the required large and multicomponent reagents in a synchronous and stoichiometric manner remains, however, challenging. Moreover, uncoordinated activity of independently acting CRISPR-Cas9 multiplexes increases the complexity of genome editing outcomes. Here, we investigate the potential of fostering precise multiplexing genome editing using high-capacity adenovector particles (AdVPs) for the delivery of Cas9 ortholog fusion constructs alone (forced Cas9 heterodimers) or together with their cognate guide RNAs (forced CRISPR-Cas9 heterodimers). We demonstrate that the efficiency and accuracy of targeted chromosomal DNA deletions achieved by single AdVPs encoding forced CRISPR-Cas9 heterodimers is superior to that obtained when the various components are delivered separately. Finally, all-in-one AdVP delivery of forced CRISPR-Cas9 heterodimers triggers robust DMD exon 51 splice site excision resulting in reading frame restoration and selection-free detection of dystrophin in muscle cells derived from Duchenne muscular dystrophy patients. In conclusion, AdVPs promote precise multiplexing genome editing through the integrated delivery of forced CRISPR-Cas9 heterodimer components, which, in comparison with split conventional CRISPR-Cas9 multiplexes, engage target sequences in a more coordinated fashion.

4.
Nucleic Acids Res ; 50(13): 7761-7782, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35776127

RESUMO

Targeted chromosomal insertion of large genetic payloads in human cells leverages and broadens synthetic biology and genetic therapy efforts. Yet, obtaining large-scale gene knock-ins remains particularly challenging especially in hard-to-transfect stem and progenitor cells. Here, fully viral gene-deleted adenovector particles (AdVPs) are investigated as sources of optimized high-specificity CRISPR-Cas9 nucleases and donor DNA constructs tailored for targeted insertion of full-length dystrophin expression units (up to 14.8-kb) through homologous recombination (HR) or homology-mediated end joining (HMEJ). In muscle progenitor cells, donors prone to HMEJ yielded higher CRISPR-Cas9-dependent genome editing frequencies than HR donors, with values ranging between 6% and 34%. In contrast, AdVP transduction of HR and HMEJ substrates in induced pluripotent stem cells (iPSCs) resulted in similar CRISPR-Cas9-dependent genome editing levels. Notably, when compared to regular iPSCs, in p53 knockdown iPSCs, CRISPR-Cas9-dependent genome editing frequencies increased up to 6.7-fold specifically when transducing HMEJ donor constructs. Finally, single DNA molecule analysis by molecular combing confirmed that AdVP-based genome editing achieves long-term complementation of DMD-causing mutations through the site-specific insertion of full-length dystrophin expression units. In conclusion, AdVPs are a robust and flexible platform for installing large genomic edits in human cells and p53 inhibition fosters HMEJ-based genome editing in iPSCs.


Assuntos
Distrofina , Edição de Genes , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Sistemas CRISPR-Cas/genética , Distrofina/genética , Distrofina/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Edição de Genes/métodos , Humanos , Células Musculares/metabolismo , Distrofia Muscular de Duchenne/patologia , Proteína Supressora de Tumor p53/metabolismo
5.
Nucleic Acids Res ; 49(20): 11986-12001, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34669958

RESUMO

Prime editing is a recent precision genome editing modality whose versatility offers the prospect for a wide range of applications, including the development of targeted genetic therapies. Yet, an outstanding bottleneck for its optimization and use concerns the difficulty in delivering large prime editing complexes into cells. Here, we demonstrate that packaging prime editing constructs in adenoviral capsids overcomes this constrain resulting in robust genome editing in both transformed and non-transformed human cells with up to 90% efficiencies. Using this cell cycle-independent delivery platform, we found a direct correlation between prime editing activity and cellular replication and disclose that the proportions between accurate prime editing events and unwanted byproducts can be influenced by the target-cell context. Hence, adenovector particles permit the efficacious delivery and testing of prime editing reagents in human cells independently of their transformation and replication statuses. The herein integrated gene delivery and gene editing technologies are expected to aid investigating the potential and limitations of prime editing in numerous experimental settings and, eventually, in ex vivo or in vivo therapeutic contexts.


Assuntos
Adenoviridae/genética , Edição de Genes/métodos , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Deleção de Genes , Células HEK293 , Células HeLa , Humanos
6.
Nucleic Acids Res ; 49(2): 1173-1198, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33398349

RESUMO

RNA-guided nucleases (RGNs) based on CRISPR systems permit installing short and large edits within eukaryotic genomes. However, precise genome editing is often hindered due to nuclease off-target activities and the multiple-copy character of the vast majority of chromosomal sequences. Dual nicking RGNs and high-specificity RGNs both exhibit low off-target activities. Here, we report that high-specificity Cas9 nucleases are convertible into nicking Cas9D10A variants whose precision is superior to that of the commonly used Cas9D10A nickase. Dual nicking RGNs based on a selected group of these Cas9D10A variants can yield gene knockouts and gene knock-ins at frequencies similar to or higher than those achieved by their conventional counterparts. Moreover, high-specificity dual nicking RGNs are capable of distinguishing highly similar sequences by 'tiptoeing' over pre-existing single base-pair polymorphisms. Finally, high-specificity RNA-guided nicking complexes generally preserve genomic integrity, as demonstrated by unbiased genome-wide high-throughput sequencing assays. Thus, in addition to substantially enlarging the Cas9 nickase toolkit, we demonstrate the feasibility in expanding the range and precision of DNA knockout and knock-in procedures. The herein introduced tools and multi-tier high-specificity genome editing strategies might be particularly beneficial whenever predictability and/or safety of genetic manipulations are paramount.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Desoxirribonuclease I/metabolismo , Edição de Genes/métodos , Proteínas de Bactérias/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/genética , Células Clonais , Desoxirribonuclease I/genética , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Genes Reporter , Técnicas de Genotipagem , Células HEK293 , Células HeLa , Heterocromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas , Polimorfismo Genético , RNA Guia de Cinetoplastídeos/genética , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/enzimologia , Especificidade por Substrato , Transfecção
7.
Cells ; 9(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252479

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle wasting disorder arising from mutations in the ~2.4 Mb dystrophin-encoding DMD gene. RNA-guided CRISPR-Cas9 nucleases (RGNs) are opening new DMD therapeutic routes whose bottlenecks include delivering sizable RGN complexes for assessing their effects on human genomes and testing ex vivo and in vivo DMD-correcting strategies. Here, high-capacity adenoviral vectors (HC-AdVs) encoding single or dual high-specificity RGNs with optimized components were investigated for permanently repairing defective DMD alleles either through exon 51-targeted indel formation or major mutational hotspot excision (>500 kb), respectively. Firstly, we establish that, at high doses, third-generation HC-AdVs lacking all viral genes are significantly less cytotoxic than second-generation adenoviral vectors deleted in E1 and E2A. Secondly, we demonstrate that genetically retargeted HC-AdVs can correct up to 42% ± 13% of defective DMD alleles in muscle cell populations through targeted removal of the major mutational hotspot, in which over 60% of frame-shifting large deletions locate. Both DMD gene repair strategies tested readily led to the detection of Becker-like dystrophins in unselected muscle cell populations, leading to the restoration of ß-dystroglycan at the plasmalemma of differentiated muscle cells. Hence, HC-AdVs permit the effective assessment of DMD gene-editing tools and strategies in dystrophin-defective human cells while broadening the gamut of DMD-correcting agents.


Assuntos
Adenoviridae/genética , Edição de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos/genética , Distrofia Muscular de Duchenne/genética , Humanos , Distrofia Muscular de Duchenne/patologia
8.
Gene Ther ; 27(5): 209-225, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31900423

RESUMO

Enhancing the intracellular delivery and performance of RNA-guided CRISPR-Cas9 nucleases (RGNs) remains in demand. Here, we show that nuclear translocation of commonly used Streptococcus pyogenes Cas9 (SpCas9) proteins is suboptimal. Hence, we generated eCas9.4NLS by endowing the high-specificity eSpCas9(1.1) nuclease (eCas9.2NLS) with additional nuclear localization signals (NLSs). We demonstrate that eCas9.4NLS coupled to prototypic or optimized guide RNAs achieves efficient targeted DNA cleavage and probe the performance of SpCas9 proteins with different NLS compositions at target sequences embedded in heterochromatin versus euchromatin. Moreover, after adenoviral vector (AdV)-mediated transfer of SpCas9 expression units, unbiased quantitative immunofluorescence microscopy revealed 2.3-fold higher eCas9.4NLS nuclear enrichment levels than those observed for high-specificity eCas9.2NLS. This improved nuclear translocation yielded in turn robust gene editing after nonhomologous end joining repair of targeted double-stranded DNA breaks. In particular, AdV delivery of eCas9.4NLS into muscle progenitor cells resulted in significantly higher editing frequencies at defective DMD alleles causing Duchenne muscular dystrophy (DMD) than those achieved by AdVs encoding the parental, eCas9.2NLS, protein. In conclusion, this work provides a strong rationale for integrating viral vector and optimized gene-editing technologies to bring about enhanced RGN delivery and performance.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Vetores Genéticos/genética , RNA Guia de Cinetoplastídeos/genética
9.
Nucleic Acids Res ; 48(2): 974-995, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799604

RESUMO

Genome editing typically involves recombination between donor nucleic acids and acceptor genomic sequences subjected to double-stranded DNA breaks (DSBs) made by programmable nucleases (e.g. CRISPR-Cas9). Yet, nucleases yield off-target mutations and, most pervasively, unpredictable target allele disruptions. Remarkably, to date, the untoward phenotypic consequences of disrupting allelic and non-allelic (e.g. pseudogene) sequences have received scant scrutiny and, crucially, remain to be addressed. Here, we demonstrate that gene-edited cells can lose fitness as a result of DSBs at allelic and non-allelic target sites and report that simultaneous single-stranded DNA break formation at donor and acceptor DNA by CRISPR-Cas9 nickases (in trans paired nicking) mostly overcomes such disruptive genotype-phenotype associations. Moreover, in trans paired nicking gene editing can efficiently and precisely add large DNA segments into essential and multiple-copy genomic sites. As shown herein by genotyping assays and high-throughput genome-wide sequencing of DNA translocations, this is achieved while circumventing most allelic and non-allelic mutations and chromosomal rearrangements characteristic of nuclease-dependent procedures. Our work demonstrates that in trans paired nicking retains target protein dosages in gene-edited cell populations and expands gene editing to chromosomal tracts previously not possible to modify seamlessly due to their recurrence in the genome or essentiality for cell function.


Assuntos
Sistemas CRISPR-Cas/genética , DNA/genética , Desoxirribonuclease I/química , Edição de Genes/métodos , Sequência de Bases , DNA/química , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Desoxirribonuclease I/genética , Endonucleases/química , Marcação de Genes/métodos , Genoma/genética , Humanos , Mutação/genética , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética
10.
Mol Ther Nucleic Acids ; 16: 141-154, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30884291

RESUMO

Gene editing based on homology-directed repair (HDR) depends on donor DNA templates and programmable nucleases, e.g., RNA-guided CRISPR-Cas9 nucleases. However, next to inducing HDR involving the mending of chromosomal double-stranded breaks (DSBs) with donor DNA substrates, programmable nucleases also yield gene disruptions, triggered by competing non-homologous end joining (NHEJ) pathways. It is, therefore, imperative to identify parameters underlying the relationship between these two outcomes in the context of HDR-based gene editing. Here we implemented quantitative cellular systems, based on epigenetically regulated isogenic target sequences and donor DNA of viral, non-viral, and synthetic origins, to investigate gene-editing outcomes resulting from the interaction between different chromatin conformations and donor DNA structures. We report that, despite a significantly higher prevalence of NHEJ-derived events at euchromatin over Krüppel-associated box (KRAB)-impinged heterochromatin, HDR frequencies are instead generally less impacted by these alternative chromatin conformations. Hence, HDR increases in relation to NHEJ when open euchromatic target sequences acquire a closed heterochromatic state, with donor DNA structures determining, to some extent, the degree of this relative increase in HDR events at heterochromatin. Finally, restricting nuclease activity to HDR-permissive G2 and S phases of the cell cycle through a Cas9-Geminin construct yields lower, hence more favorable, NHEJ to HDR ratios, independently of the chromatin structure.

12.
Nat Commun ; 8(1): 657, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939824

RESUMO

Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.


Assuntos
DNA/genética , Edição de Genes , Sistemas CRISPR-Cas , Linhagem Celular , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA por Junção de Extremidades , Genoma Humano , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
13.
Sci Rep ; 6: 37051, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845387

RESUMO

Mutations disrupting the reading frame of the ~2.4 Mb dystrophin-encoding DMD gene cause a fatal X-linked muscle-wasting disorder called Duchenne muscular dystrophy (DMD). Genome editing based on paired RNA-guided nucleases (RGNs) from CRISPR/Cas9 systems has been proposed for permanently repairing faulty DMD loci. However, such multiplexing strategies require the development and testing of delivery systems capable of introducing the various gene editing tools into target cells. Here, we investigated the suitability of adenoviral vectors (AdVs) for multiplexed DMD editing by packaging in single vector particles expression units encoding the Streptococcus pyogenes Cas9 nuclease and sequence-specific gRNA pairs. These RGN components were customized to trigger short- and long-range intragenic DMD excisions encompassing reading frame-disrupting exons in patient-derived muscle progenitor cells. By allowing synchronous and stoichiometric expression of the various RGN components, we demonstrate that dual RGN-encoding AdVs can correct over 10% of target DMD alleles, readily leading to the detection of Becker-like dystrophin proteins in unselected muscle cell populations. Moreover, we report that AdV-based gene editing can be tailored for removing mutations located within the over 500-kb major DMD mutational hotspot. Hence, this single DMD editing strategy can in principle tackle a broad spectrum of mutations present in more than 60% of patients with DMD.


Assuntos
Adenoviridae , Sistemas CRISPR-Cas , Distrofina , Edição de Genes , Terapia Genética , Vetores Genéticos , Distrofia Muscular de Duchenne , Distrofina/biossíntese , Distrofina/genética , Células HeLa , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/cirurgia , Mutação
14.
Nucleic Acids Res ; 44(13): 6482-92, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27280977

RESUMO

Transcription activator-like effector nucleases (TALENs) and RNA-guided nucleases derived from clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 systems have become ubiquitous genome editing tools. Despite this, the impact that distinct high-order chromatin conformations have on these sequence-specific designer nucleases is, presently, ill-defined. The same applies to the relative performance of TALENs and CRISPR/Cas9 nucleases at isogenic target sequences subjected to different epigenetic modifications. Here, to address these gaps in our knowledge, we have implemented quantitative cellular systems based on genetic reporters in which the euchromatic and heterochromatic statuses of designer nuclease target sites are stringently controlled by small-molecule drug availability. By using these systems, we demonstrate that TALENs and CRISPR/Cas9 nucleases are both significantly affected by the high-order epigenetic context of their target sequences. In addition, this outcome could also be ascertained for S. pyogenes CRISPR/Cas9 complexes harbouring Cas9 variants whose DNA cleaving specificities are superior to that of the wild-type Cas9 protein. Thus, the herein investigated cellular models will serve as valuable functional readouts for screening and assessing the role of chromatin on designer nucleases based on different platforms or with different architectures or compositions.


Assuntos
Sistemas CRISPR-Cas/genética , Cromatina/genética , Edição de Genes , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Epigênese Genética/genética , Engenharia Genética , Genótipo , Humanos , Conformação Molecular , Streptococcus pyogenes/genética
15.
Nucleic Acids Res ; 44(3): 1449-70, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26762977

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles.


Assuntos
Distrofina/metabolismo , Endonucleases/metabolismo , Mioblastos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Adenoviridae/genética , Alelos , Sequência de Bases , Western Blotting , Sistemas CRISPR-Cas , Linhagem Celular , Reparo do DNA por Junção de Extremidades , Distrofina/genética , Endonucleases/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Mutação , RNA Guia de Cinetoplastídeos/genética , Transdução Genética
16.
Nat Methods ; 11(10): 1051-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25152084

RESUMO

Engineered sequence-specific nucleases and donor DNA templates can be customized to edit mammalian genomes via the homologous recombination (HR) pathway. Here we report that the nature of the donor DNA greatly affects the specificity and accuracy of the editing process following site-specific genomic cleavage by transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nucleases. By applying these designer nucleases together with donor DNA delivered as protein-capped adenoviral vector (AdV), free-ended integrase-defective lentiviral vector or nonviral vector templates, we found that the vast majority of AdV-modified human cells underwent scarless homology-directed genome editing. In contrast, a significant proportion of cells exposed to free-ended or to covalently closed HR substrates were subjected to random and illegitimate recombination events. These findings are particularly relevant for genome engineering approaches aiming at high-fidelity genetic modification of human cells.


Assuntos
Adenoviridae/genética , DNA Viral/genética , DNA/química , Desoxirribonucleases/química , Engenharia Genética/métodos , Linhagem Celular , Separação Celular , Marcação de Genes/métodos , Genoma , Células HEK293 , Células HeLa , Humanos , Reação em Cadeia da Polimerase , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico , Reprodutibilidade dos Testes
17.
Sci Rep ; 4: 5105, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24870050

RESUMO

CRISPR/Cas9-derived RNA-guided nucleases (RGNs) are DNA targeting systems, which are rapidly being harnessed for gene regulation and gene editing purposes in model organisms and cell lines. As bona fide gene delivery vehicles, viral vectors may be particularly fit to broaden the applicability of RGNs to other cell types including dividing and quiescent primary cells. Here, the suitability of adenoviral vectors (AdVs) for delivering RGN components into various cell types is investigated. We demonstrate that AdVs, namely second-generation fiber-modified AdVs encoding Cas9 or single guide RNA (gRNA) molecules addressing the Cas9 nuclease to the AAVS1 "safe harbor" locus or to a recombinant model allele can be produced to high-titers (up to 20 × 10(10) transducing units/ml). Importantly, AdV-mediated transduction of gRNA:Cas9 ribonucleoprotein complexes into transformed and non-transformed cells yields rates of targeted mutagenesis similar to or approaching those achieved by isogenic AdVs encoding TALENs targeting the same AAVS1 chromosomal region. RGN-induced gene disruption frequencies in the various cell types ranged from 18% to 65%. We conclude that AdVs constitute a valuable platform for introducing RGNs into human somatic cells regardless of their transformation status. This approach should aid investigating the potential and limitations of RGNs in numerous experimental settings.


Assuntos
Adenoviridae/genética , Sistemas CRISPR-Cas/genética , Vetores Genéticos , RNA Guia de Cinetoplastídeos/genética , Terapia Genética , Humanos , Mutagênese
18.
Nucleic Acids Res ; 41(5): e63, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275534

RESUMO

The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 'safe harbor' locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform.


Assuntos
Adenoviridae/genética , Proteínas de Bactérias/genética , Desoxirribonucleases/genética , HIV-1/genética , Cromossomos Humanos , Quebras de DNA de Cadeia Dupla , Loci Gênicos , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Transdução Genética
19.
J Gene Med ; 15(1): 1-11, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23225636

RESUMO

BACKGROUND: The AdEasy system has acquired preeminence amongst the various methods for producing first-generation, early region 1 (E1)-deleted human adenovirus (HAdV) vectors (AdVs) as a result of the fast and reproducible recovery of full-length AdV genomes via homologous recombination in Escherichia coli. METHODS: From the classical AdEasy system, a new production platform was derived to assemble first- and second-generation [i.e. E1- plus early region 2A (E2A)-deleted] AdVs displaying on their surface HAdV serotype 5 (HAdV5) fibers (F5) or chimeric fibers (F5/50) comprising the tail of F5 and the fiber shaft and knob of HAdV serotype 50 (HAdV50). The CD46-interacting chimeric fibers allow for the high-level transduction of various human primary cell types of clinical interest with low or no surface expression of the Coxsackievirus and adenovirus receptor. RESULTS: A new set of pAdEasy plasmid 'backbones' with or without E2A and encoding F5 or F5/50 was constructed and recombined in E. coli strain BJ5183 with a 'shuttle' plasmid coding for ß-galactosidase. The resulting clones yielded AdV preparations with similar high titers following their rescue and propagation in producer cells. The AdVs with F5/50 were superior to those carrying F5 with respect to transducing human skeletal myocytes and mesenchymal stem cells. CONCLUSIONS: In the present study, an AdEasy system tailored for the production of not only first-, but also second-generation AdVs equipped with the receptor-interacting fiber domains of the prototypic species C HAdV5 or of the species B member HAdV50 is presented. This system expands the range of applications for this robust and versatile AdV production platform.


Assuntos
Adenovírus Humanos/genética , Enterovirus/genética , Vetores Genéticos/genética , Proteína Cofatora de Membrana/genética , Tropismo Viral , Western Blotting , Linhagem Celular , Clonagem Molecular , Escherichia coli/genética , Perfilação da Expressão Gênica , Células HeLa , Humanos , Células-Tronco Mesenquimais/metabolismo , Proteínas Recombinantes/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Transdução Genética , beta-Galactosidase/genética
20.
Hum Gene Ther ; 24(1): 78-96, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23140481

RESUMO

Integration-defective lentiviral vectors (IDLVs) are being increasingly deployed in both basic and preclinical gene transfer settings. Often, however, the IDLV transgene expression profile is muted when compared to that of their integration-proficient counterparts. We hypothesized that the episomal nature of IDLVs turns them into preferential targets for epigenetic silencing involving chromatin-remodeling histone deacetylation. Therefore, vectors carrying an array of cis-acting elements and transcriptional unit components were assembled with the aid of packaging constructs encoding either the wild-type or the class I mutant D116N integrase moieties. The transduction levels and transgene-product yields provided by each vector class were assessed in the presence and absence of the histone deacetylase (HDAC) inhibitors sodium butyrate and trichostatin A. To investigate the role of the target cell replication status, we performed experiments in growth-arrested human mesenchymal stem cells and in post-mitotic syncytial myotubes. We found that IDLVs are acutely affected by HDACs regardless of their genetic makeup or target cell replication rate. Interestingly, the magnitude of IDLV transgene expression rescue due to HDAC inhibition varied in a vector backbone- and cell type-dependent manner. Finally, investigation of histone modifications by chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) revealed a paucity of euchromatin marks distributed along IDLV genomes when compared to those measured on isogenic integration-competent vector templates. These findings support the view that IDLVs constitute preferential targets for epigenetic silencing involving histone deacetylation, which contributes to dampening their full transcriptional potential. Our data provide leads on how to most optimally titrate and deploy these promising episomal gene delivery vehicles.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Inibidores de Histona Desacetilases/metabolismo , Lentivirus/genética , Transgenes/genética , Integração Viral/genética , Bromodesoxiuridina , Butiratos , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina , Células HEK293 , Células HeLa , Humanos , Ácidos Hidroxâmicos , Integrases/genética , Mutação/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...