Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4920, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995787

RESUMO

Celiac disease is an autoimmune disorder in which ingestion of dietary gluten triggers an immune reaction in the small intestine leading to destruction of the lining epithelium. Current treatment focusses on lifelong adherence to a gluten-free diet. Gluten-specific CD4+ T cells and cytotoxic intraepithelial CD8+ T cells have been proposed to be central in disease pathogenesis. Here we use unbiased single-cell RNA-sequencing and explore the heterogeneity of CD45+ immune cells in the human small intestine. We show altered myeloid cell transcriptomes present in active celiac lesions. CD4+ and CD8+ T cells transcriptomes show extensive changes and we define a natural intraepithelial lymphocyte population that is reduced in celiac disease. We show that the immune landscape in Celiac patients on a gluten-free diet is only partially restored compared to control samples. Altogether, we provide a single cell transcriptomic resource that can inform the immune landscape of the small intestine during Celiac disease.


Assuntos
Doença Celíaca , Linfócitos T CD8-Positivos , Glutens , Humanos , Intestino Delgado , Transcriptoma
2.
J Exp Med ; 217(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667968

RESUMO

Cell differentiation is accompanied by epigenetic changes leading to precise lineage definition and cell identity. Here we present a comprehensive resource of epigenomic data of human T cell precursors along with an integrative analysis of other hematopoietic populations. Although T cell commitment is accompanied by large scale epigenetic changes, we observed that the majority of distal regulatory elements are constitutively unmethylated throughout T cell differentiation, irrespective of their activation status. Among these, the TCRA gene enhancer (Eα) is in an open and unmethylated chromatin structure well before activation. Integrative analyses revealed that the HOXA5-9 transcription factors repress the Eα enhancer at early stages of T cell differentiation, while their decommission is required for TCRA locus activation and enforced αß T lineage differentiation. Remarkably, the HOXA-mediated repression of Eα is paralleled by the ectopic expression of homeodomain-related oncogenes in T cell acute lymphoblastic leukemia. These results highlight an analogous enhancer repression mechanism at play in normal and cancer conditions, but imposing distinct developmental constraints.


Assuntos
Elementos Facilitadores Genéticos , Hematopoese/genética , Receptores de Antígenos de Linfócitos T/genética , Timo/citologia , Animais , Proteínas Reguladoras de Apoptose/genética , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Desmetilação do DNA , Metilação de DNA/genética , Epigenoma , Regulação da Expressão Gênica , Rearranjo Gênico do Linfócito T , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Ativação Linfocitária/imunologia , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Células-Tronco/citologia , Linfócitos T/citologia , Timócitos/metabolismo
3.
PLoS One ; 14(12): e0226435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869378

RESUMO

Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect normal hematopoiesis. The analysis of human AMLs has mostly been performed using end-point materials, such as cell lines and patient derived AMLs that also carry additional contributing mutations. The molecular effects of a single oncogenic hit, such as expression of the AML associated oncoprotein AML1-ETO on hematopoietic development and transformation into a (pre-) leukemic state still needs further investigation. Here we describe the development and characterization of an induced pluripotent stem cell (iPSC) system that allows in vitro differentiation towards different mature myeloid cell types such as monocytes and granulocytes. During in vitro differentiation we expressed the AML1-ETO fusion protein and examined the effects of the oncoprotein on differentiation and the underlying alterations in the gene program at 8 different time points. Our analysis revealed that AML1-ETO as a single oncogenic hit in a non-mutated background blocks granulocytic differentiation, deregulates the gene program via altering the acetylome of the differentiating granulocytic cells, and induces t(8;21) AML associated leukemic characteristics. Together, these results reveal that inducible oncogene expression during in vitro differentiation of iPS cells provides a valuable platform for analysis of aberrant regulation in disease.


Assuntos
Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Granulócitos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Proteína 1 Parceira de Translocação de RUNX1/fisiologia , Transcriptoma , Proliferação de Células/genética , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Granulócitos/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucopoese/genética , Monócitos/fisiologia , Mielopoese/genética , Proteínas de Fusão Oncogênica/genética , Oncogenes/fisiologia , Proteína 1 Parceira de Translocação de RUNX1/genética , Transcriptoma/genética , Transfecção
4.
Cell Rep ; 26(4): 1059-1069.e6, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30673601

RESUMO

Global investigation of histone marks in acute myeloid leukemia (AML) remains limited. Analyses of 38 AML samples through integrated transcriptional and chromatin mark analysis exposes 2 major subtypes. One subtype is dominated by patients with NPM1 mutations or MLL-fusion genes, shows activation of the regulatory pathways involving HOX-family genes as targets, and displays high self-renewal capacity and stemness. The second subtype is enriched for RUNX1 or spliceosome mutations, suggesting potential interplay between the 2 aberrations, and mainly depends on IRF family regulators. Cellular consequences in prognosis predict a relatively worse outcome for the first subtype. Our integrated profiling establishes a rich resource to probe AML subtypes on the basis of expression and chromatin data.


Assuntos
Cromatina , Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Mutação , Proteínas Nucleares , Proteínas de Fusão Oncogênica , Cromatina/genética , Cromatina/metabolismo , Cromatina/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
5.
Cell Rep ; 24(10): 2784-2794, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184510

RESUMO

Neutrophils are short-lived blood cells that play a critical role in host defense against infections. To better comprehend neutrophil functions and their regulation, we provide a complete epigenetic overview, assessing important functional features of their differentiation stages from bone marrow-residing progenitors to mature circulating cells. Integration of chromatin modifications, methylation, and transcriptome dynamics reveals an enforced regulation of differentiation, for cellular functions such as release of proteases, respiratory burst, cell cycle regulation, and apoptosis. We observe an early establishment of the cytotoxic capability, while the signaling components that activate these antimicrobial mechanisms are transcribed at later stages, outside the bone marrow, thus preventing toxic effects in the bone marrow niche. Altogether, these data reveal how the developmental dynamics of the chromatin landscape orchestrate the daily production of a large number of neutrophils required for innate host defense and provide a comprehensive overview of differentiating human neutrophils.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos
6.
Front Immunol ; 9: 1420, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988341

RESUMO

Dendritic cell (DC)-based immunotherapy makes use of the DC's ability to direct the adaptive immune response toward activation or inhibition. DCs perform this immune orchestration in part by secretion of selected cytokines. The most potent anti-inflammatory cytokine interleukin-10 (IL-10) is under tight regulation, as it needs to be predominantly expressed during the resolution phase of the immune response. Currently it is not clear whether there is active suppression of IL-10 by DCs at the initial pro-inflammatory stage of the immune response. Previously, knockdown of the DC-specific transcription factor DC-SCRIPT has been demonstrated to mediate an extensive increase in IL-10 production upon encounter with pro-inflammatory immune stimuli. Here, we explored how DC-SCRIPT contributes to IL-10 suppression under pro-inflammatory conditions by applying chromatin immunoprecipitation sequencing analysis of DC-SCRIPT and the epigenetic marks H3K4me3 and H3K27ac in human DCs. The data showed binding of DC-SCRIPT to a GA-rich motif at H3K27ac-marked genomic enhancers that associated with genes encoding MAPK dual-specificity phosphatases (DUSPs). Functional studies revealed that upon knockdown of DC-SCRIPT, human DCs express much less DUSP4 and exhibit increased phosphorylation of the three major MAPKs (ERK, JNK, and p38). Enhanced ERK signaling in DC-SCRIPT-knockdown-DCs led to higher production of IL-10, which was reverted by rescuing DUSP4 expression. Finally, DC-SCRIPT-knockdown-DCs induced less IFN-γ and increased IL-10 production in naïve T cells, indicative for a more anti-inflammatory phenotype. In conclusion, we have delineated a new mechanism by which DC-SCRIPT allows DCs to limit IL-10 production under inflammatory conditions and potentiate pro-inflammatory Th1 responses. These insights may be exploited to improve DC-based immunotherapies.

7.
Oncotarget ; 9(39): 25630-25646, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29876013

RESUMO

Epigenetic alterations have been associated with both pathogenesis and progression of cancer. By screening of library compounds, we identified a novel hybrid epi-drug MC2884, a HAT/EZH2 inhibitor, able to induce bona fide cancer-selective cell death in both solid and hematological cancers in vitro, ex vivo and in vivo xenograft models. Anticancer action was due to an epigenome modulation by H3K27me3, H3K27ac, H3K9/14ac decrease, and to caspase-dependent apoptosis induction. MC2884 triggered mitochondrial pathway apoptosis by up-regulation of cleaved-BID, and strong down-regulation of BCL2. Even aggressive models of cancer, such as p53-/- or TET2-/- cells, responded to MC2884, suggesting MC2884 therapeutic potential also for the therapy of TP53 or TET2-deficient human cancers. MC2884 induced massive apoptosis in ex vivo human primary leukemia blasts with poor prognosis in vivo, by targeting BCL2 expression. MC2884-treatment reduced acetylation of the BCL2 promoter at higher level than combined p300 and EZH2 inhibition. This suggests a key role for BCL-2 reduction in potentiating responsiveness, also in combination therapy with BCL2 inhibitors. Finally, we identified both the mechanism of MC2884 action as well as a potential therapeutic scheme of its use. Altogether, this provides proof of concept for the use of epi-drugs coupled with epigenome analyses to 'personalize' precision medicine.

8.
Oncotarget ; 9(39): 25647-25660, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29876014

RESUMO

Epigenomic alterations have been associated with both pathogenesis and progression of cancer. Here, we analyzed the epigenome of two high-risk APL (hrAPL) patients and compared it to non-high-risk APL cases. Despite the lack of common genetic signatures, we found that human hrAPL blasts from patients with extremely poor prognosis display specific patterns of histone H3 acetylation, specifically hyperacetylation at a common set of enhancer regions. In addition, unique profiles of the repressive marks H3K27me3 and DNA methylation were exposed in high-risk APLs. Epigenetic comparison with low/intermediate-risk APLs and AMLs revealed hrAPL-specific patterns of histone acetylation and DNA methylation, suggesting these could be further developed into markers for clinical identification. The epigenetic drug MC2884, a newly generated general HAT/EZH2 inhibitor, induces apoptosis of high-risk APL blasts and reshapes their epigenomes by targeting both active and repressive marks. Together, our analysis uncovers distinctive epigenome signatures of hrAPL patients, and provides proof of concept for use of epigenome profiling coupled to epigenetic drugs to 'personalize' precision medicine.

9.
Cell Rep ; 17(8): 2087-2100, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851970

RESUMO

The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels of histone acetylation but also at distal elements characterized by low acetylation levels and binding of the hematopoietic transcription factors LYL1 and LMO2. In contrast, ERG, FLI1, TAL1, and RUNX1 bind at all AML1-ETO-occupied regulatory regions, including those of the AML1-ETO gene itself, suggesting their involvement in regulating AML1-ETO expression levels. While expression of AML1-ETO in myeloid differentiated induced pluripotent stem cells (iPSCs) induces leukemic characteristics, overexpression increases cell death. We find that expression of wild-type transcription factors RUNX1 and ERG in AML is required to prevent this oncogene overexpression. Together our results show that the interplay of the epigenome and transcription factors prevents apoptosis in t(8;21) AML cells.


Assuntos
Apoptose/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Hematopoese/genética , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Translocação Genética , Acetilação , Sequência de Bases , Linhagem Celular Tumoral , Linhagem da Célula/genética , Sobrevivência Celular/genética , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Técnicas de Silenciamento de Genes , Genoma Humano , Histona Desacetilases/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Oncogenes , Regiões Promotoras Genéticas , Ligação Proteica/genética , Regulador Transcricional ERG/metabolismo
10.
Cell ; 167(5): 1354-1368.e14, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863248

RESUMO

Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, ß-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo ß-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. VIDEO ABSTRACT.


Assuntos
Tolerância Imunológica , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Sepse/imunologia , Transcrição Gênica , beta-Glucanas/imunologia , Diferenciação Celular , Metilação de DNA , Epigenômica , Redes Reguladoras de Genes , Código das Histonas , Humanos , Imunidade Inata , Memória Imunológica , Macrófagos/citologia , Monócitos/citologia , Sepse/genética
11.
Cell ; 167(5): 1398-1414.e24, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863251

RESUMO

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Assuntos
Epigenômica , Doenças do Sistema Imunitário/genética , Monócitos/metabolismo , Neutrófilos/metabolismo , Linfócitos T/metabolismo , Transcrição Gênica , Adulto , Idoso , Processamento Alternativo , Feminino , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/metabolismo , Código das Histonas , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Adulto Jovem
12.
Cell ; 167(5): 1415-1429.e19, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863252

RESUMO

Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/metabolismo , Doenças do Sistema Imunitário/genética , Alelos , Diferenciação Celular , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/patologia , Humanos , Doenças do Sistema Imunitário/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , População Branca/genética
13.
Genome Biol ; 16: 264, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26619937

RESUMO

BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by activated transcription factors to recruitment of activated transcription factors to pre-established long-range interactions. RESULTS: Using circular chromosome conformation capture coupled with next generation sequencing and high-resolution chromatin interaction analysis by paired-end tag sequencing of P300, we observed agonist-induced changes in long-range chromatin interactions, and uncovered interconnected enhancer-enhancer hubs spanning up to one megabase. The vast majority of activated glucocorticoid receptor and nuclear factor kappa-b appeared to join pre-existing P300 enhancer hubs without affecting the chromatin conformation. In contrast, binding of the activated transcription factors to loci with their consensus response elements led to the increased formation of an active epigenetic state of enhancers and a significant increase in long-range interactions within pre-existing enhancer networks. De novo enhancers or ligand-responsive enhancer hubs preferentially interacted with ligand-induced genes. CONCLUSIONS: We demonstrate that, at a subset of genomic loci, ligand-mediated induction leads to active enhancer formation and an increase in long-range interactions, facilitating efficient regulation of target genes. Therefore, our data suggest an active role of signal-dependent transcription factors in chromatin and long-range interaction remodeling.


Assuntos
Cromatina/química , Elementos Facilitadores Genéticos , NF-kappa B/metabolismo , Receptores de Glucocorticoides/metabolismo , Sítios de Ligação , Cromatina/metabolismo , Redes Reguladoras de Genes , Ligantes , Fatores de Transcrição de p300-CBP/metabolismo
14.
Science ; 345(6204): 1251086, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25258085

RESUMO

Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro-differentiated naïve, tolerized, and trained macrophages. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and we identified pathways functionally implicated in trained immunity. ß-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in deoxyribonuclease I hypersensitive sites at cell-type-specific epigenetic loci unveiled differentiation and treatment-specific repertoires. Altogether, we provide a resource to understand the epigenetic changes that underlie innate immunity in humans.


Assuntos
Diferenciação Celular/genética , Epigênese Genética , Imunidade Inata/genética , Macrófagos/citologia , Monócitos/citologia , Animais , Sítios de Ligação/genética , Desoxirribonuclease I/química , Impressão Genômica , Humanos , Memória Imunológica , Inflamassomos/genética , Inflamassomos/imunologia , Macrófagos/imunologia , Camundongos , Monócitos/imunologia , Fatores de Transcrição/metabolismo , beta-Glucanas/imunologia
15.
J Bacteriol ; 195(7): 1573-82, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354753

RESUMO

Although carbon dioxide (CO2) is known to be essential for Streptococcus pneumoniae growth, it is poorly understood how this respiratory tract pathogen adapts to the large changes in environmental CO2 levels it encounters during transmission, host colonization, and disease. To identify the molecular mechanisms that facilitate pneumococcal growth under CO2-poor conditions, we generated a random S. pneumoniae R6 mariner transposon mutant library representing mutations in 1,538 different genes and exposed it to CO2-poor ambient air. With Tn-seq, we found mutations in two genes that were involved in S. pneumoniae adaptation to changes in CO2 availability. The gene pca, encoding pneumococcal carbonic anhydrase (PCA), was absolutely essential for S. pneumoniae growth under CO2-poor conditions. PCA catalyzes the reversible hydration of endogenous CO2 to bicarbonate (HCO3(-)) and was previously demonstrated to facilitate HCO3(-)-dependent fatty acid biosynthesis. The gene folC that encodes the dihydrofolate/folylpolyglutamate synthase was required at the initial phase of bacterial growth under CO2-poor culture conditions. FolC compensated for the growth-phase-dependent decrease in S. pneumoniae intracellular long-chain (n > 3) polyglutamyl folate levels, which was most pronounced under CO2-poor growth conditions. In conclusion, S. pneumoniae adaptation to changes in CO2 availability involves the retention of endogenous CO2 and the preservation of intracellular long-chain polyglutamyl folate pools.


Assuntos
Dióxido de Carbono/metabolismo , Ácido Fólico/biossíntese , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Elementos de DNA Transponíveis , Técnicas de Inativação de Genes , Mutagênese Insercional , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Streptococcus pneumoniae/crescimento & desenvolvimento
16.
Environ Microbiol ; 15(5): 1275-89, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22568606

RESUMO

Anaerobic ammonium-oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in marine water columns and sediments worldwide belong almost exclusively to the 'Candidatus Scalindua' species, but the molecular basis of their metabolism and competitive fitness is presently unknown. We applied community sequencing of a marine anammox enrichment culture dominated by 'Candidatus Scalindua profunda' to construct a genome assembly, which was subsequently used to analyse the most abundant gene transcripts and proteins. In the S. profunda assembly, 4756 genes were annotated, and only about half of them showed the highest identity to the only other anammox bacterium of which a metagenome assembly had been constructed so far, the freshwater 'Candidatus Kuenenia stuttgartiensis'. In total, 2016 genes of S. profunda could not be matched to the K. stuttgartiensis metagenome assembly at all, and a similar number of genes in K.stuttgartiensis could not be found in S. profunda. Most of these genes did not have a known function but 98 expressed genes could be attributed to oligopeptide transport, amino acid metabolism, use of organic acids and electron transport. On the basis of the S. profunda metagenome, and environmental metagenome data, we observed pronounced differences in the gene organization and expression of important anammox enzymes, such as hydrazine synthase (HzsAB), nitrite reductase (NirS) and inorganic nitrogen transport proteins. Adaptations of Scalindua to the substrate limitation of the ocean may include highly expressed ammonium, nitrite and oligopeptide transport systems and pathways for the transport, oxidation, and assimilation of small organic compounds that may allow a more versatile lifestyle contributing to the competitive fitness of Scalindua in the marine realm.


Assuntos
Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Genoma Bacteriano , Metagenoma , Ciclo do Nitrogênio , Planctomycetales/genética , Planctomycetales/metabolismo , Organismos Aquáticos/classificação , Nitrito Redutases/metabolismo , Oceanos e Mares , Oxirredução , Planctomycetales/classificação , Compostos de Amônio Quaternário/metabolismo , RNA Ribossômico 16S/genética , Microbiologia da Água
17.
Nature ; 479(7371): 127-30, 2011 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-21964329

RESUMO

Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N(2)) to the atmosphere. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N(2)H(4)). Here we show that N(2)H(4) is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N(2)H(4). We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N(2)H(4) synthesis and its oxidation to N(2). These results present a new biochemical reaction forging an N-N bond and fill a lacuna in our understanding of the biochemical synthesis of the N(2) in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle.


Assuntos
Anaerobiose , Compostos de Amônio Quaternário/metabolismo , Amônia/metabolismo , Atmosfera/química , Bactérias Anaeróbias/metabolismo , Biocatálise , Hidrazinas/metabolismo , Nitrato Redutase/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Ciclo do Nitrogênio , Fixação de Nitrogênio , Oxirredução , Compostos de Amônio Quaternário/química
18.
PLoS One ; 6(5): e19470, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21589869

RESUMO

For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21--pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program.


Assuntos
Células-Tronco Embrionárias/citologia , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/fisiologia , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Fator 4 Semelhante a Kruppel , Camundongos , Proteína Homeobox Nanog , Coesinas
19.
Nucleic Acids Res ; 39(14): 6069-85, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21459846

RESUMO

The p53-family member p73 plays a role in various cellular signaling pathways during development and growth control and it can have tumor suppressor properties. Several isoforms of p73 exist with considerable differences in their function. Whereas the functions of the N-terminal isoforms (TA and ΔNp73) and their opposing pro- and antiapoptotic roles have become evident, the functional differences of the distinct C-terminal splice forms of TAp73 have remained unclear. Here, we characterized the global genomic binding sites for TAp73α and TAp73ß by chromatin immunoprecipitation sequencing as well as the transcriptional responses by performing RNA sequencing. We identified a specific p73 consensus binding motif and found a strong enrichment of AP1 motifs in close proximity to binding sites for TAp73α. These AP1 motif-containing target genes are selectively upregulated by TAp73α, while their mRNA expression is repressed upon TAp73ß induction. We show that their expression is dependent on endogenous c-Jun and that recruitment of c-Jun to the respective AP1 sites was impaired upon TAp73ß expression, in part due to downregulation of c-Jun. Several of these AP1-site containing TAp73α-induced genes impinge on apoptosis induction, suggesting an underlying molecular mechanism for the observed functional differences between TAp73α and TAp73ß.


Assuntos
Apoptose/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ativação Transcricional , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular , Proteínas de Ligação a DNA/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Proteína Acessória do Receptor de Interleucina-1/genética , Ubiquitina-Proteína Ligases Nedd4 , Proteínas Nucleares/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Elementos Reguladores de Transcrição , Fator de Transcrição AP-1/metabolismo , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/química , Ubiquitina-Proteína Ligases/genética
20.
PLoS One ; 6(3): e17574, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21394211

RESUMO

The tumor suppressor p53 plays a crucial role in cellular growth control inducing a plethora of different response pathways. The molecular mechanisms that discriminate between the distinct p53-responses have remained largely elusive. Here, we have analyzed the p53-regulated pathways induced by Actinomycin D and Etoposide treatment resulting in more growth arrested versus apoptotic cells respectively. We found that the genome-wide p53 DNA-binding patterns are almost identical upon both treatments notwithstanding transcriptional differences that we observed in global transcriptome analysis. To assess the role of post-translational modifications in target gene choice and activation we investigated the genome-wide level of phosphorylation of Serine 46 of p53 bound to DNA (p53-pS46) and of Serine 15 (p53-pS15). Interestingly, the extent of S46 phosphorylation of p53 bound to DNA is considerably higher in cells directed towards apoptosis while the degree of phosphorylation at S15 remains highly similar. Moreover, our data suggest that following different chemotherapeutical treatments, the amount of chromatin-associated p53 phosphorylated at S46 but not at pS15 is higher on certain apoptosis related target genes. Our data provide evidence that cell fate decisions are not made primarily on the level of general p53 DNA-binding and that post-translationally modified p53 can have distinct DNA-binding characteristics.


Assuntos
Regulação Neoplásica da Expressão Gênica , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Análise por Conglomerados , DNA/metabolismo , Dactinomicina/farmacologia , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano/genética , Humanos , Anotação de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Análise de Sequência de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...