Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0272520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35925998

RESUMO

Agricultural practice in adjusting planting density and harvest date are important factors for plant development and crop improvement, reaching maximum yields and enhancing the production of secondary metabolites. However, it is unclear as to the optimal planting densities during mass production that encourage consistent, high yield secondary metabolite content. For this, controlled environment, crop production facilities such as plant factories with artificial lighting (PFAL) offer opportunity to enhance quality and stabilize production of herbal plants. This study assessed the effect of plant density and harvest date on physiological responses, yield and andrographolide (AP1) content in Andrographis paniculata (Andrographis) using hydroponic conditions in a PFAL system. Andrographis, harvested at vegetative stage (30 days after transplanting; 30 DAT) and initial stage of flowering (60 DAT) exhibited no significant differences in growth parameters or andrographolide accumulation according to planting densities. Harvest time at flowering stage (90 DAT) showed the highest photosynthetic rates at a planting density of 15 plants m-2. Highest yield, number of leaves, and Andrographolide (AP1) content (mg per gram of DW in m2) were achieved at a more moderate planting density (30 plants m-2). Finally, five out of seventeen indices of leaf reflectance reveal high correlation (r = 0.8 to 1.0 and r = -0.8 to -1.0, P<0.01) with AP1 content. These results suggest that a planting density of 30 plants m-2 and harvest time of 90 DAT provide optimal growing condition under the hydroponic PFAL system.


Assuntos
Andrographis , Diterpenos , Andrographis/metabolismo , Andrographis paniculata , Diterpenos/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo
2.
Sci Rep ; 12(1): 588, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022462

RESUMO

Light-emitting diodes (LEDs) are an artificial light source used in indoor cultivation to influence plant growth, photosynthesis performance and secondary metabolite synthesis. Holy basil plants (Ocimum tenuiflorum) were cultivated under fully controlled environmental conditions with different red (R) and blue (B) light intensity ratios (3R:1B, 1R:1B and 1R:3B), along with combined green (G) LED (2R:1G:2B). The photosynthetic activities of both cultivars were maximal under 3R:1B. However, the highest fresh (FW) and dry (DW) weight values of green holy basil were recorded under 3R:1B and 2R:1G:2B, significantly higher than those under alternative light conditions. For red holy basil, the highest FW and DW were recorded under 1R:3B. Moreover, 2R:1G:2B treatment promoted pigment (chlorophyll and carotenoid) accumulation in green holy basil, while red holy basil was found to be rich in both pigments under 3R:1B. Antioxidant capacity was also influenced by light spectrum, resulting in greater total phenolic content (TPC) and DPPH accumulation in both cultivars under 1R:3B. The highest content of flavonoid in green holy basil was detected under 1R:1B; meanwhile, 1R:3B treatment significantly promoted flavonoid content in red holy basil. In addition, anthocyanin content increased in red holy basil under 1R:3B conditions. Gas chromatography coupled with mass spectrometry (GC-MS/MS) analysis of chemical composition showed higher proportional accumulation in Methyleugenol and Caryophyllene of two cultivars grown under all light spectrum ratios at two developmental stages. Overall, specific light spectrum ratios induced different chemical composition responses in each cultivar and at each developmental stage. These results suggest that 3R:1B was favorable for biomass accumulation and photosynthetic responses in green holy basil, while 1R:3B provided antioxidant accumulation. For red holy basil cultivation, 1R:3B provided optimal growing conditions, promoting improvements in plant biomass, and physiological and antioxidant capacities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...