Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
WIREs Water ; 10(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162537

RESUMO

Centralized water infrastructure has, over the last century, brought safe and reliable drinking water to much of the world. But climate change, combined with aging and underfunding, is increasingly testing the limits of-and reversing gains made by-these large-scale water systems. To address these growing strains and gaps, we must assess and advance alternatives to centralized water provision and sanitation. The water literature is rife with examples of systems that are neither centralized nor networked, but still meet water needs of local communities in important ways, including: informal and hybrid water systems, decentralized water provision, community-based water management, small drinking water systems, point-of-use treatment, small-scale water vendors, and packaged water. Our work builds on these literatures by proposing a convergence approach that can integrate and explore the benefits and challenges of modular, adaptive, and decentralized ("MAD") water provision and sanitation, often foregrounding important advances in engineering technology. We further provide frameworks to evaluate justice, economic feasibility, governance, human health, and environmental sustainability as key parameters of MAD water system performance.

2.
Sci Total Environ ; 647: 99-109, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30077859

RESUMO

The long-term effect of using treated wastewater is not clearly defined: some researchers argue that it is better than freshwater for the soil health; others disapprove, claiming that irrigation with unconventional water resources causes soil degradation. This study assesses the impact of irrigation with non-traditional water on the chemical and mineralogical properties of a calcareous clayey soil from West Texas. The exponential rise in population and the realities of climate change contribute to the global increase in freshwater scarcity: non-conventional water sources, such as treated wastewater (TWW) and brackish groundwater (BGW), offer potentially attractive alternative water resources for irrigated agriculture. For this research, the differences between TWW and BGW were addressed by collecting and analyzing water samples for salt and nutrient content. Soil samples from three horizons (Ap, A, and B) were obtained from three different fields: Rainfed (RF), BGW irrigated, and TWW irrigated. Soil was analyzed for texture, salinity, sodicity, and carbon content. Clay mineralogy of the three different fields was analyzed using the B-horizons. The outcomes from the analysis showed that the BGW from the Lipan aquifer has higher salinity and is harder compared to TWW. Although the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR), and electroconductivity (EC) increased marginally compared to the control soil (RF), the soils were in good health, all the values of interest (SAR < 13, ESP < 15, pH < 8.5, and EC < 4) were low, indicating no sodicity or salinity problems. Smectite, illite, and kaolinite were identified in the three B-horizon samples using bulk X-ray diffraction (XRD). Overall, no major changes were observed in the soil. Thus, TWW and BGW are viable replacements for freshwater irrigation in arid and semi-arid regions.

3.
Sci Total Environ ; 643: 807-818, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29958169

RESUMO

Wastewater reuse is a practice that has been gaining attention for the past few decades as the world's population rises and water resources become scarce. Wastewater application on soil can affect soil health, and the manner and extent to which this occurs depends heavily on soil type and water quality. This study compared the long-term (15+ years) effects and suitability of using secondary-level treated municipal wastewater and brackish groundwater for irrigation on the water holding capacity of a clayey, calcareous soil on a cotton farm near San Angelo, Texas. The soil-water holding properties were determined from the extracted hydrostructural parameters of the two characteristic curves: water retention curve and soil shrinkage curve based on the pedostructure concept. In the pedostructure concept, these hydrostructural parameters are characteristic properties of the soil aggregates structure and its thermodynamic interactions with water. Results indicate that use of secondary treated wastewater increased available water capacity in the top horizon (0-15 cm) and decreased the available water holding capacity of this particular soil in the sub-horizons (15-72 cm). The brackish groundwater irrigation resulted in no effect on available water capacity in the top horizon, but significantly decreased it in the sub-horizons as well. The rainfed soil was the healthiest soil in terms of water holding capacity, but rainfall conditions do not produce profitable cotton yields. Whereas, treated wastewater irrigated soil is producing the highest yields for the farmer. Thus, this treated wastewater source and irrigation system can serve as a suitable irrigation alternative to using brackish groundwater, enhancing the water resource sustainability of this region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...