Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1713: 464529, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38029660

RESUMO

A detailed analysis of intra-particle volumes and layer thicknesses and their effect on the diffusion of solutes in hydrophilic interaction liquid chromatography (HILIC) was made. Pycnometric measurements and the retention volume of deuterated mobile phase constituents (water and acetonitrile) were used to estimate the void volume inside the column, including not only the volume of the mobile phase but also part of the enriched water solvent acting as the stationary phase in HILIC. The mobile phase (hold-up) volume accessible to non-retained components was estimated using a homologous series approach. The joint analysis of the different approaches indicated the formation of enriched water layers on the hydrophobic silica mesopore walls with a thickness varying significantly with mobile phase composition. The maximal thickness of the enriched water layers, which corresponded to the minimum void volume accessible to unretained solutes, marked a transition in the retention behavior of the studied analytes. Discrepancies between deuterated solvent measurements and pycnometry were explained by the existence of an irreplaceable water layer adsorbed on the silica surface. Regarding the diffusion behavior in HILIC, peak parking experiments were used to interpret the influence of the acetonitrile content on the effective diffusion coefficient Deff. A systematic decrease in Deff and molecular diffusion Dm was observed with decreasing acetonitrile concentration, primarily attributed to variations in mobile phase viscosity. Notably, Deff/Dm remained nearly unaffected by variations in mobile phase composition. Finally, the effective medium theory was used to make a comprehensive analysis of Dpart/Dm to study the contribution to band broadening when the solute resides in the mesopores. The obtained data unveiled a curvature with a minimum corresponding to conditions of maximum water-layer thickness and retention. For the weakly retained compounds (k' < 0.5) the Dpart/Dm-values were found to be relatively high (order of 0.35-0.5), which directly reflects the high γsDs/Dm-values that were observed (order 0.35-7).


Assuntos
Dióxido de Silício , Água , Dióxido de Silício/química , Cromatografia Líquida/métodos , Solventes , Interações Hidrofóbicas e Hidrofílicas , Acetonitrilas
2.
J Chromatogr A ; 1682: 463485, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36182682

RESUMO

The improvement of supercritical fluid chromatography (SFC) instrumentation enhanced its reliability and utility over the past decade. The further development of high speed and high resolution separations is however obstructed by the lack of accurate models for axial dispersion in SFC. This work is a first step to tackle this by developing more reliable methods to measure molecular (Dmol) and longitudinal diffusion (Deff) in SFC, as these affect all aspects of separation efficiency. In the present contribution, we report on an improved method, to enable more flexible, reliable and accurate measurements of Dmol in SFC using commercial instrumentation. A two-column variant of the stopped-flow experiment is proposed as an adapted set-up for measuring the effective longitudinal diffusion coefficient Deff in SFC-conditions. Using the set-ups for a number of test-compounds, it has been found that Deff, and the coefficients describing its constituent sub-processes (cf. particle diffusion Dpart and surface diffusion γsDs), all vary in a linearly proportional way with the bulk diffusion coefficient Dmol within a high degree of accuracy. It has also been found that Deff decreases much more sharply with increasing retention factor compared to LC. By applying the effective medium theory, it was found that the relative surface diffusion coefficient γsDs/Dmol decreases strongly with retention factor for the investigated solutes and column, in contrary to what is typically observed in reversed phase liquid chromatography. Results indicate that this might be related to a change in retention behavior of the analytes. Obviously, more analytes and conditions need to be explored to complete this picture and the extend range of applicability of these observations.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia de Fase Reversa , Cromatografia com Fluido Supercrítico/métodos , Difusão , Reprodutibilidade dos Testes
3.
J Chromatogr A ; 1678: 463327, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35872536

RESUMO

Diffusion data are essential for adequate analysis of the kinetic separation performance of any chromatographic system. Unfortunately, for Supercritical Fluid Chromatography (SFC), very little data is available of the diffusion coefficients in mobile phases typically used in contemporary methods, i.e. with a non-negligible amount of polar modifier such as methanol. In this work, a relative simple method which only requires minor modifications to a standard commercially available SFC instrument is used to determine the diffusion coefficient of an extensive set of pharmaceutical compounds in the range of 10-50 vol% of modifier (methanol) in CO2. By using a traditional SFC column, the solute is first separated from the sample solvent plug, before entering a long capillary, where the band broadening can be linked to its diffusion coefficient using the Taylor-Aris equation. By using two UV-detectors, before and after the capillary, the effect of the dispersion in the column can be eliminated and the true volumetric flow rate determined. It was found that in the investigated range of conditions, the change in mobile phase viscosity in a first approximation allows to predict the variation in diffusion coefficient. Chemical structure and more particularly functional groups can however have a significant effect on the diffusion coefficient.


Assuntos
Cromatografia com Fluido Supercrítico/normas , Metanol/química , Preparações Farmacêuticas/química , Solventes/química , Cromatografia com Fluido Supercrítico/métodos , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...