Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Comput Struct Biotechnol J ; 23: 2358-2374, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38873647

RESUMO

Secondary active transporters shuttle substrates across eukaryotic and prokaryotic membranes, utilizing different electrochemical gradients. They are recognized as one of the antimicrobial efflux pumps among pathogens. While primary active transporters within the genome of C. difficile 630 have been completely cataloged, the systematical study of secondary active transporters remains incomplete. Here, we not only identify secondary active transporters but also disclose their evolution and role in drug resistance in C. difficile 630. Our analysis reveals that C. difficile 630 carries 147 secondary active transporters belonging to 27 (super)families. Notably, 50 (34%) of them potentially contribute to antimicrobial resistance (AMR). AMR-secondary active transporters are structurally classified into five (super)families: the p-aminobenzoyl-glutamate transporter (AbgT), drug/metabolite transporter (DMT) superfamily, major facilitator (MFS) superfamily, multidrug and toxic compound extrusion (MATE) family, and resistance-nodulation-division (RND) family. Surprisingly, complete RND genes found in C. difficile 630 are likely an evolutionary leftover from the common ancestor with the diderm. Through protein structure comparisons, we have potentially identified six novel AMR-secondary active transporters from DMT, MATE, and MFS (super)families. Pangenome analysis revealed that half of the AMR-secondary transporters are accessory genes, which indicates an important role in adaptive AMR function rather than innate physiological homeostasis. Gene expression profile firmly supports their ability to respond to a wide spectrum of antibiotics. Our findings highlight the evolution of AMR-secondary active transporters and their integral role in antibiotic responses. This marks AMR-secondary active transporters as interesting therapeutic targets to synergize with other antibiotic activity.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38399413

RESUMO

Cholangiocarcinoma (CCA) is a difficult-to-treat cancer, with limited therapeutic options and surgery being the only curative treatment. Standard chemotherapy involves gemcitabine-based therapies combined with cisplatin, oxaliplatin, capecitabine, or 5-FU with a dismal prognosis for most patients. Receptor tyrosine kinases (RTKs) are aberrantly expressed in CCAs encompassing potential therapeutic opportunity. Hence, 112 RTK inhibitors were screened in KKU-M213 cells, and ceritinib, an approved targeted therapy for ALK-fusion gene driven cancers, was the most potent candidate. Ceritinib's cytotoxicity in CCA was assessed using MTT and clonogenic assays, along with immunofluorescence, western blot, and qRT-PCR techniques to analyze gene expression and signaling changes. Furthermore, the drug interaction relationship between ceritinib and cisplatin was determined using a ZIP synergy score. Additionally, spheroid and xenograft models were employed to investigate the efficacy of ceritinib in vivo. Our study revealed that ceritinib effectively killed CCA cells at clinically relevant plasma concentrations, irrespective of ALK expression or mutation status. Ceritinib modulated multiple signaling pathways leading to the inhibition of the PI3K/Akt/mTOR pathway and activated both apoptosis and autophagy. Additionally, ceritinib and cisplatin synergistically reduced CCA cell viability. Our data show ceritinib as an effective treatment of CCA, which could be potentially explored in the other cancer types without ALK mutations.

3.
Microbiol Spectr ; 12(3): e0162123, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315031

RESUMO

A complex microbial community in the gut may prevent the colonization of enteric pathogens such as Salmonella. Some individual or a combination of species in the gut may confer colonization resistance against Salmonella. To gain a better understanding of the colonization resistance against Salmonella enterica, we isolated a library of 1,300 bacterial strains from feral chicken gut microbiota which represented a total of 51 species. Using a co-culture assay, we screened the representative species from this library and identified 30 species that inhibited Salmonella enterica subspecies enterica serovar Typhimurium in vitro. To improve the Salmonella inhibition capacity, from a pool of fast-growing species, we formulated 66 bacterial blends, each of which composed of 10 species. Bacterial blends were more efficient in inhibiting Salmonella as compared to individual species. The blend that showed maximum inhibition (Mix10) also inhibited other serotypes of Salmonella frequently found in poultry. The in vivo effect of Mix10 was examined in a gnotobiotic and conventional chicken model. The Mix10 consortium significantly reduced Salmonella load at day 2 post-infection in gnotobiotic chicken model and decreased intestinal tissue damage and inflammation in both models. Cell-free supernatant of Mix10 did not show Salmonella inhibition, indicating that Mix10 inhibits Salmonella through either nutritional competition, competitive exclusion, or through reinforcement of host immunity. Out of 10 species, 3 species in Mix10 did not colonize, while 3 species constituted more than 70% of the community. Two of these species were previously uncultured bacteria. Our approach could be used as a high-throughput screening system to identify additional bacterial sub-communities that confer colonization resistance against enteric pathogens and its effect on the host.IMPORTANCESalmonella colonization in chicken and human infections originating from Salmonella-contaminated poultry is a significant problem. Poultry has been identified as the most common food linked to enteric pathogen outbreaks in the United States. Since multi-drug-resistant Salmonella often colonize chicken and cause human infections, methods to control Salmonella colonization in poultry are needed. The method we describe here could form the basis of developing gut microbiota-derived bacterial blends as a microbial ecosystem therapeutic against Salmonella.


Assuntos
Microbiota , Salmonelose Animal , Salmonella enterica , Animais , Humanos , Galinhas , Salmonella typhimurium/fisiologia , Salmonelose Animal/microbiologia , Vida Livre de Germes
4.
Front Oncol ; 13: 1184900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144528

RESUMO

Introduction: Bile duct cancer (cholangiocarcinoma, CCA) has a poor prognosis for patients, and despite recent advances in targeted therapies for other cancer types, it is still treated with standard chemotherapy. Anaplastic lymphoma kinase (ALK) has been shown to be a primary driver of disease progression in lung cancer, and ALK inhibitors are effective therapeutics in aberrant ALK-expressing tumors. Aberrant ALK expression has been documented in CCA, but the use of ALK inhibitors has not been investigated. Using CCA cell lines and close-to-patient primary cholangiocarcinoma cells, we investigated the potential for ALK inhibitors in CCA. Methods: ALK, cMET, and ROS1 expression was determined in CCA patient tissue by immunohistochemistry and digital droplet polymerase chain reaction, and that in cell lines was determined by immunoblot and immunofluorescence. The effect on cell viability and mechanism of action of ALK, cMet, and ROS1 inhibitors was determined in CCA cell lines. To determine whether ceritinib could affect primary CCA cells, tissue was taken from four patients with biliary tract cancer, without ALK rearrangement, mutation, or overexpression, and grown in three-dimensional tumor growth assays in the presence or absence of humanized mesenchymal cells. Results: ALK and cMet but not ROS were both upregulated in CCA tissues and cell lines. Cell survival was inhibited by crizotinib, a c-met/ALK/ROS inhibitor. To determine the mechanism of this effect, we tested c-Met-specific and ALK/ROS-specific inhibitors, capmatinib and ceritinib, respectively. Whereas capmatinib did not affect cell survival, ceritinib dose-dependently inhibited survival in all cell lines, with IC50 ranging from 1 to 9 µM and co-treatments with gemcitabine and cisplatin further sensitized cells, with IC50 ranging from IC50 0.60 to 2.32 µM. Ceritinib did not inhibit cMet phosphorylation but did inhibit ALK phosphorylation. ALK was not mutated in any of these cell lines. Only ceritinib inhibited 3D growth of all four patient samples below mean peak serum concentration, in the presence and absence of mesenchymal cells, whereas crizotinib and capmatinib failed to do this. Ceritinib appeared to exert its effect more through autophagy than apoptosis. Discussion: These results indicate that ceritinib or other ALK/ROS inhibitors could be therapeutically useful in cholangiocarcinoma even in the absence of aberrant ALK/ROS1 expression.

5.
Sci Rep ; 13(1): 22598, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114514

RESUMO

A poor outcome for cholangiocarcinoma (CCA) patients is still a clinical challenge. CCA is typically recognized by the desmoplastic nature, which accounts for its malignancy. Among various extracellular matrix proteins, laminin is the most potent inducer for CCA migration. Herein, we accessed the expression profiles of laminin gene family and explored the significance of the key laminin subunit on CCA aggressiveness. Of all 11 laminin genes, LAMA3, LAMA5, LAMB3 and LAMC2 were concordantly upregulated based on the analysis of multiple public transcriptomic datasets and also overexpressed in Thai CCA cell lines and patient tissues in which LAMA3A upregulated in the highest frequency (97%) of the cases. Differential expression genes (DEGs) analysis of low and high laminin signature groups revealed LAMA3 as the sole common DEG in all investigated datasets. Restratifying CCA samples according to LAMA3 expression indicated the association of LAMA3 in the focal adhesion pathway. Silencing LAMA3 revealed that it plays important roles in CCA cell proliferation, adhesion, migration and epithelial-to-mesenchymal transition. Taken together, this research signifies the roles of dysregulated ECM homeostasis in CCA malignancy and highlights, for the first time, the potential usage of LAMA3 as the diagnostic biomarker and the therapeutic target to tackle the CCA stromal.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Moléculas de Adesão Celular/metabolismo , Laminina/metabolismo , Colangiocarcinoma/patologia , Proliferação de Células/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
6.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375849

RESUMO

Nasopharyngeal carcinoma (NPC) is a prevalent cancer in Southeast Asia, but effective treatment options remain limited, and chemotherapy has a high resistance rate. Asiatic acid (AA), a triterpenoid found in Centella asiatica, has shown anticancer activity in various cancers. Therefore, this study aims to investigate the anticancer effects and mechanisms of AA in NPC cell lines. The effects of AA on NPC cytotoxicity, apoptosis, and migration were determined in TW-01 and SUNE5-8F NPC cell lines. Western blot analysis was performed to evaluate the protein expression levels affected by AA. The role of AA in proliferation and migration was investigated in STAT3 and claudin-1 knockdown cells. AA inhibited NPC cell viability and migration and induced cell death by increasing cleaved caspase-3 expression. Moreover, AA inhibited STAT3 phosphorylation and reduced claudin-1 expression in NPC cells. Although knockdown of STAT3 or claudin-1 slightly reduced cell viability, it did not enhance the anti-proliferative effect of AA. However, knockdown of STAT3 or claudin-1 increased the anti-migratory effect of AA in NPC cells. These results suggest that AA can be a promising candidate for drug development against NPC.

7.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37173994

RESUMO

Cholangiocarcinoma (CCA) is an architecturally complex tumour with high heterogeneity. Discovery at later stages makes treatment challenging. However, the lack of early detection methodologies and the asymptomatic nature of CCA make early diagnosis more difficult. Recent studies revealed the fusions in Fibroblast Growth Factor Receptors (FGFRs), a sub-family of RTKs, as promising targets for targeted therapy for CCA. Particularly, FGFR2 fusions have been of particular interest, as translocations have been found in approximately 13% of CCA patients. Pursuing this, Pemigatinib, a small-molecule inhibitor of FGFR, became the first targeted therapy drug to be granted accelerated approval by the FDA for treating CCA patients harbouring FGFR2 fusions who have failed first-line chemotherapy. However, despite the availability of Pemigatinib, a very limited group of patients benefit from this treatment. Moreover, as the underlying mechanism of FGFR signalling is poorly elucidated in CCA, therapeutic inhibitors designed to inhibit this pathway are prone to primary and acquired resistance, as witnessed amongst other Tyrosine Kinase Inhibitors (TKIs). While acknowledging the limited cohort that benefits from FGFR inhibitors, and the poorly elucidated mechanism of the FGFR pathway, we sought to characterise the potential of FGFR inhibitors in CCA patients without FGFR2 fusions. Here we demonstrate aberrant FGFR expression in CCA samples using bioinformatics and further confirm phosphorylated-FGFR expression in paraffinised CCA tissues using immunohistochemistry. Our results highlight p-FGFR as a biomarker to guide FGFR-targeted therapies. Furthermore, CCA cell lines with FGFR expression were sensitive to a selective pan-FGFR inhibitor, PD173074, suggesting that this drug can be used to suppress CCA cells irrespective of the FGFR2 fusions. Finally, the correlation analysis utilising publicly available cohorts suggested the possibility of crosstalk amongst the FGFR and EGFR family of receptors as they are significantly co-expressed. Accordingly, dual inhibition of FGFRs and EGFR by PD173074 and EGFR inhibitor erlotinib was synergistic in CCA. Hence, the findings from this study provide support for further clinical investigation of PD173074, as well as other FGFR inhibitors, to benefit a larger cohort of patients. Altogether, this study shows for the first time the potential of FGFRs and the importance of dual inhibition as a novel therapeutic strategy in CCA.

8.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275995

RESUMO

Platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs) play essential roles in promoting cholangiocarcinoma (CCA) cell survival by mediating paracrine crosstalk between tumor and cancer-associated fibroblasts (CAFs), indicating the potential of PDGFR as a target for CCA treatment. Clinical trials evaluating PDGFR inhibitors for CCA treatment have shown limited efficacy. Furthermore, little is known about the role of PDGF/PDGFR expression and the mechanism underlying PDGFR inhibitors in CCA related to Opisthorchis viverrini (OV). Therefore, we examined the effect of PDGFR inhibitors in OV-related CCA cells and investigated the molecular mechanism involved. We found that the PDGF and PDGFR mRNAs were overexpressed in CCA tissues compared to resection margins. Notably, PDGFR-α showed high expression in CCA cells, while PDGFR-ß was predominantly expressed in CAFs. The selective inhibitor CP-673451 induced CCA cell death by suppressing the PI3K/Akt/Nrf2 pathway, leading to a decreased expression of Nrf2-targeted antioxidant genes. Consequently, this led to an increase in ROS levels and the promotion of CCA apoptosis. CP-673451 is a promising PDGFR-targeted drug for CCA and supports the further clinical investigation of CP-673451 for CCA treatment, particularly in the context of OV-related cases.

9.
Front Microbiol ; 13: 998215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312948

RESUMO

Receptor-binding proteins (RBPs) are located at the viral tail and mediate the initial recognition of phage to a specific bacterial host. Phage RBPs have co-evolved with numerous types of host receptors resulting in the formation of a diverse assortment of cognate pairs of RBP-receptors that function during the phage attachment step. Although several Clostridioides difficile bacteriophages have been discovered, their RBPs are poorly described. Using homology analysis, putative prophage-tail structure (pts) genes were identified from the prophage genome of the C. difficile HN10 strain. Competition and enzyme-linked immunosorbent assays, using recombinant PtsHN10M, demonstrated the interaction of this Pts to C. difficile cells, suggesting a role as a phage RBP. Gel filtration and cross-linking assay revealed the native form of this protein as a homotrimer. Moreover, truncated variants indicated that the C-terminal domain of PtsHN10M was important for binding to C. difficile cells. Interaction of PtsHN10M was also observed to the low-molecular weight subunit of surface-layer protein A (SlpA), located at the outermost surface of C. difficile cells. Altogether, our study highlights the function of PtsHN10M as an RBP and potentially paves the way toward phage engineering and phage therapy against C. difficile infection.

10.
Anticancer Res ; 42(7): 3507-3522, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35790268

RESUMO

BACKGROUND/AIM: Nasopharyngeal carcinoma (NPC) originates in the hidden nasopharynx, causing NPC patients to be diagnosed at a late stage and develop drug resistance. Therefore, the identification of drug-resistance biomarkers is indispensable to improve NPC detection and treatment. Hence, this study aimed to identify novel cisplatinresistance biomarkers using comparative proteomic profiles of cisplatin-resistant (CDDP/NPC) cell lines. MATERIALS AND METHODS: Two cisplatin-resistant NPC cell lines (CDDP/5-8F and CDDP/6-10B) were established by a continuous cisplatin treatment. Then, morphology, proliferation, and migration of all NPC cells were evaluated, followed by the examination of protein profiles using 1D in-gel digestion coupled with mass spectrometry. The potential drugresistance biomarkers were transcriptionally and translationally validated by qPCR and western blotting, respectively. RESULTS: CDDP/5-8F and CDDP/6-10B cells were successfully developed with a resistance index of 8.42 and 2.46, respectively. Furthermore, both CDDP/NPC cells demonstrated relatively altered morphology, retarded growth, and decreased migration. Additionally, the comparative proteomic analysis of CDDP/NPC revealed 92 differentially expressed proteins (DEPs). Specifically, up-regulated DEPs were notably enriched in cellular metabolic processes, while down-regulated DEPs were predominantly enriched in actin filament-based movement, methylation, and programmed cell death. Six up-regulated, namely ALPI, CKB, HMGB1, KHSRP, PDIA4, and STMN1, and three down-regulated proteins, FUBP1, YWHAZ, and PLEC, were validated at the transcriptional level. CKB and FUBP1 were further validated at the translational level and demonstrated corresponding expression levels at both protein and gene levels. CONCLUSION: Our findings suggest novel biomarkers to indicate cisplatin resistance in NPC, expanding the drug resistance knowledge and paving the way for in-depth mechanism studies in NPC.


Assuntos
Cisplatino , Neoplasias Nasofaríngeas , Biomarcadores , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA
11.
Toxicol In Vitro ; 82: 105385, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35568131

RESUMO

The serine/arginine-rich protein kinase-1 (SRPK1) is an enzyme that has an essential role in regulating numerous aspects of mRNA splicing. SRPK1 has been reported to be overexpressed in multiple cancers, suggesting it as a promising therapeutic target in oncology. No previous studies reported the role of SRPK1 in cholangiocarcinoma (CCA) cells. This study aimed to examine the expression of SRPK1 and the effects of SRPK1 inhibition on the viability and angiogenesis activity of CCA cells using a selective SRPK1 inhibitor, SPHINX31. Here, we demonstrate that SPHINX31 (0.3-10 µM) had no inhibitory effects on CCA cells' viability and proliferation. However, SPHINX31 decreased the mRNA expression of pro-angiogenic VEGF-A165a isoform. In addition, SPHINX31 attenuated SRSF1 phosphorylation and nuclear localization, and increased the ratio of VEGF-A165b/total VEGF-A proteins. Moreover, when HUVECs were grown in conditioned medium from SPHINX31-treated CCA cells, migration slowed, and tube formation decreased. The present study demonstrates that targeting SRPK1 in CCA cells effectively attenuates angiogenesis by suppressing pro-angiogenic VEGF-A isoform splicing. These findings suggest a potential therapeutic treatment using SRPK1 inhibitors for the inhibition of angiogenesis in cholangiocarcinoma.


Assuntos
Colangiocarcinoma , Proteínas Serina-Treonina Quinases , Arginina , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/uso terapêutico , RNA Mensageiro , Serina , Fatores de Processamento de Serina-Arginina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Microbiol Spectr ; 10(2): e0236121, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35377223

RESUMO

Endolysin is a phage-encoded cell-wall hydrolase which degrades the peptidoglycan layer of the bacterial cell wall. The enzyme is often expressed at the late stage of the phage lytic cycle and is required for progeny escape. Endolysins of bacteriophage that infect Gram-positive bacteria often comprises two domains: a peptidoglycan hydrolase and a cell-wall binding domain (CBD). Although the catalytic domain of endolysin is relatively well-studied, the precise role of CBD is ambiguous and remains controversial. Here, we focus on the function of endolysin CBD from a recently isolated Clostridioides difficile phage. We found that the CBD is not required for lytic activity, which is strongly prevented by the surface layer of C. difficile. Intriguingly, hidden Markov model analysis suggested that the endolysin CBD is likely derived from the CWB2 motif of C. difficile cell-wall proteins but possesses a higher binding affinity to bacterial cell-wall polysaccharides. Moreover, the CBD forms a homodimer, formation of which is necessary for interaction with the surface saccharides. Importantly, endolysin diffusion and sequential cytolytic assays showed that CBD of endolysin is required for the enzyme to be anchored to post-lytic cell-wall remnants, suggesting its physiological roles in limiting diffusion of the enzyme, preserving neighboring host cells, and thereby enabling the phage progeny to initiate new rounds of infection. Taken together, this study provides an insight into regulation of endolysin through CBD and can potentially be applied for endolysin treatment against C. difficile infection. IMPORTANCE Endolysin is a peptidoglycan hydrolase encoded in a phage genome. The enzyme is attractive due to its potential use as antibacterial treatment. To utilize endolysin for the therapeutic propose, understanding of the fundamental role of endolysin becomes important. Here, we investigate the function of cell-wall binding domain (CBD) of an endolysin from a C. difficile phage. The domain is homologous to a cell-wall associating module of bacterial cell-wall proteins, likely acquired during phage-host coevolution. The interaction of CBD to bacterial cell walls reduces enzyme diffusion and thereby limits cell lysis of the neighboring bacteria. Our findings indicate that the endolysin is trapped to the cell-wall residuals through CBD and might serve as an advantage for phage replication. Thus, employing a CBD-less endolysin might be a feasible strategy for using endolysin for the treatment of C. difficile infection.


Assuntos
Bacteriófagos , Clostridioides difficile , Bacteriófagos/genética , Parede Celular/metabolismo , Clostridioides , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/análise , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Polissacarídeos Bacterianos/metabolismo
13.
Front Oncol ; 12: 999158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713574

RESUMO

Introduction: Cholangiocarcinoma (CCA) is difficult to cure due to its ineffective treatment and advanced stage diagnosis. Thoroughly mechanistic understandings of CCA pathogenesis crucially help improving the treatment success rates. Using three-dimensional (3D) cell culture platform offers several advantages over a traditional two-dimensional (2D) culture as it resembles more closely to in vivo tumor. Methods: Here, we aimed to establish the 3D CCA spheroids with lowly (KKU-100) and highly (KKU-213A) metastatic potentials to investigate the CCA migratory process and its EMT-associated galectin-3 in the 3D setting. Results and discussion: Firstly, the growth of lowly metastatic KKU-100 cells was slower than highly metastatic KKU-213A cells in both 2D and 3D systems. Hollow formation was observed exclusively inside the KKU-213A spheroids, not in KKU-100. Additionally, the migration activity of KKU-213A cells was higher than that of KKU-100 cells in both 2D and 3D systems. Besides, altered expression of galectin-3 were observed across all CCA culture conditions with substantial relocalization from inside the 2D cells to the border of spheroids in the 3D system. Notably, the CCA migration was inversely proportional to the galectin-3 expression in the 3D culture, but not in the 2D setting. This suggests the contribution of culture platforms to the alternation of the CCA cell migration process. Conclusions: Thus, our data revealed that 3D culture of CCA cells was phenotypically distinct from 2D culture and pointed to the superiority of using the 3D culture model for examining the CCA cellular mechanisms, providing knowledges that are better correlated with CCA phenotypes in vivo.

14.
Front Oncol ; 12: 1084713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776376

RESUMO

Background: Nasopharyngeal carcinoma (NPC) is a type of cancers that develops in the nasopharynx, the very upper part of the throat behind the nose. NPC is typically diagnosed in later stages of the disease and has a high rate of recurrence due to the location of the tumor growth site. In this study, we compared the gene expression profiles of NPC tissues from patients with and without recurrence to identify potential molecular biomarkers of NPC recurrence. Methods: Microarrays were used to analyze the expression of genes in 15 NPC tissues taken at the time of diagnosis and at the site of recurrence following therapeutic treatment. Pathway enrichment analysis was used to examine the biological interactions between the major differentially expressed genes. The target identified was then validated using immunohistochemistry on 86 NPC tissue samples. Results: Our data showed that the Wnt signaling pathway was enhanced in NPC tissues with recurrence. FZD10, a component of the Wnt signaling pathway, was significantly expressed in NPC tissues, and was significantly associated with NPC recurrence. Conclusion: Our study provides new insights into the pathogenesis of NPC and identifies FZD10 as a potential molecular biomarker for NPC recurrence. FZD10 may be a promising candidate for NPC recurrence and a potential therapeutic target.

15.
World J Gastroenterol ; 27(42): 7210-7232, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876784

RESUMO

Clostridioides difficile (C. difficile) is a gram-positive, anaerobic spore-forming bacterium and a major cause of antibiotic-associated diarrhea. Humans are naturally resistant to C. difficile infection (CDI) owing to the protection provided by healthy gut microbiota. When the gut microbiota is disturbed, C. difficile can colonize, produce toxins, and manifest clinical symptoms, ranging from asymptomatic diarrhea and colitis to death. Despite the steady-if not rising-prevalence of CDI, it will certainly become more problematic in a world of antibiotic overuse and the post-antibiotic era. C. difficile is naturally resistant to most of the currently used antibiotics as it uses multiple resistance mechanisms. Therefore, current CDI treatment regimens are extremely limited to only a few antibiotics, which include vancomycin, fidaxomicin, and metronidazole. Therefore, one of the main challenges experienced by the scientific community is the development of alternative approaches to control and treat CDI. In this Frontier article, we collectively summarize recent advances in alternative treatment approaches for CDI. Over the past few years, several studies have reported on natural product-derived compounds, drug repurposing, high-throughput library screening, phage therapy, and fecal microbiota transplantation. We also include an update on vaccine development, pre- and pro-biotics for CDI, and toxin antidote approaches. These measures tackle CDI at every stage of disease pathology via multiple mechanisms. We also discuss the gaps and concerns in these developments. The next epidemic of CDI is not a matter of if but a matter of when. Therefore, being well-equipped with a collection of alternative therapeutics is necessary and should be prioritized.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/efeitos adversos , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/epidemiologia , Transplante de Microbiota Fecal , Humanos , Desenvolvimento de Vacinas
16.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34577598

RESUMO

Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies that primarily originate from the bile duct. Tumor heterogeneity is a prime characteristic of CCA and considering the scarcity of approved targeted therapy drugs, this makes precision oncology impractical in CCA. Stratifying patients based on their molecular signature and biomarker-guided therapy may offer a conducive solution. Receptors tyrosine kinases (RTK) are potential targets for novel therapeutic strategies in CCA as RTK signaling is dysregulated in CCA. This study aims to identify targetable RTK profile in CCA using a bioinformatic approach. We discovered that CCA samples could be grouped into molecular subtypes based on the gene expression profile of selected RTKs (RTK25). Using the RTK25 gene list, we discovered five distinct molecular subtypes of CCA in this cohort. Tyrosine kinase inhibitors that target each RTK profile and their subsequent molecular signatures were also discovered. These results suggest that certain RTKs correlate with each other, indicating that tailored dual inhibition of RTKs may be more favorable than monotherapy. The results from this study can direct future investigative attention towards validating this concept in in vivo and in vitro systems. Ultimately, this will facilitate biomarker-guided clinical trials for the successful approval of novel therapeutic options in CCA.

17.
Exp Cell Res ; 406(2): 112765, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358523

RESUMO

Nasopharyngeal carcinoma (NPC) originates in the nasopharynx epithelium. Although concurrent chemoradiation therapy followed by chemotherapy is considered as an effective treatment, there is substantial drug resistance in locally advanced NPC patients. One major contributor to the chemoresistance includes aberrant expression of cell adhesion molecules, such as integrin α and ß subunits, giving rise to cell adhesion-mediated drug resistance. Thus, the aim of this study was to investigate the effect of integrin α5 on the development of intrinsic cisplatin resistance in NPC and the associated underlying mechanisms using in vitro three-dimensional (3D) spheroid models, as well as induced cisplatin-resistant NPC (NPCcisR). We demonstrated that established 3D highly- (5-8F) and lowly- (6-10B) metastatic NPC spheroids overexpressed integrin α5 and aggravated their resistance to cisplatin. Besides, enhanced integrin α5 resulted in substantially reduced growth, corresponding to G0/G1 and G2/M cell cycle arrest. In addition, 5-8FcisR and 6-10BcisR cells in 3D forms synergistically strengthened endurance of their spheroids to cisplatin treatment as observed by increased resistance index (RI) and decreased apoptosis. Mechanistically, the aberrantly expressed integrin α5 decreased drug susceptibility in NPC spheroids by inactivating ERK and inhibition of caspase-3 inducing apoptosis. Furthermore, the effect of integrin α5 inducing intrinsic resistance was verified via treatment with ATN-161, a peptide inhibitor for integrin α5ß1. The results showed dramatic reduction in integrin α5 expression, reversal of ERK phosphorylation and caspase-3 cleavage, together with elevated cisplatin sensitivity, indicating regulation of innate drug resistance via integrin α5. Taken together, our findings suggest that integrin α5 could act as a promising target to enhance the chemotherapeutic sensitivity in NPC.


Assuntos
Apoptose , Caspase 3/química , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Integrina alfa5/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/química , Carcinoma Nasofaríngeo/patologia , Esferoides Celulares/patologia , Antineoplásicos/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular , Humanos , Integrina alfa5/genética , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/secundário , Fosforilação , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
18.
Antibiotics (Basel) ; 10(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34439034

RESUMO

In recent decades, the incidence of Clostridioides difficile infection (CDI) has remained high in both community and health-care settings. With the increasing rate of treatment failures and its ability to form spores, an alternative treatment for CDI has become a global priority. We used the microdilution assay to determine minimal inhibitory concentrations (MICs) of vancomycin and teicoplanin against 30 distinct C. difficile strains isolated from various host origins. We also examined the effect of drugs on spore germination and outgrowth by following the development of OD600. Finally, we confirmed the spore germination and cell stages by microscopy. We showed that teicoplanin exhibited lower MICs compared to vancomycin in all tested isolates. MICs of teicoplanin ranged from 0.03-0.25 µg/mL, while vancomycin ranged from 0.5-4 µg/mL. Exposure of C. difficile spores to broth supplemented with various concentrations of antimicrobial agents did not affect the initiation of germination, but the outgrowth to vegetative cells was inhibited by all test compounds. This finding was concordant with aberrant vegetative cells after antibiotic treatment observed by light microscopy. This work highlights the efficiency of teicoplanin for treatment of C. difficile through prevention of vegetative cell outgrowth.

19.
Curr Oncol ; 28(4): 2529-2539, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34287269

RESUMO

BACKGROUND: Members of the Wnt signaling pathway have been shown to play a role in nasopharyngeal carcinoma (NPC) progression. AIM: The purpose of this study was to investigate WNT8B protein expression in NPC patients using tissue microarray (TMA) analysis and to evaluate its correlation with patient survival and clinical parameters. METHODS: A total of 82 NPC cases, together with six normal nasopharyngeal tissue samples, were targeted to construct the TMA blocks. The WNT8B protein expression was evaluated by immunohistochemistry and its correlation to the clinicopathological features was investigated. RESULTS: Sixty-two of 82 (75.6%) cases exhibited high WNT8B protein expression while 20/82 (24.4%) cases appeared to have low WNT8B expression. The univariate analysis revealed that systemic metastasis was associated with patient 5-year survival. The multivariate Cox proportional hazard regression analysis showed that WNT8B expression and systemic metastasis were significantly associated with the survival of NPC patients. Furthermore, there was no correlation found between the WNT8B protein expression and other clinicopathological parameters. CONCLUSION: Our results suggest that the expression of WNT8B is associated with NPC patients' survival and could serve as an independent prognostic factor for NPC patients.


Assuntos
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas Wnt/genética , Humanos , Imuno-Histoquímica , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Prognóstico
20.
Antibiotics (Basel) ; 10(6)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199301

RESUMO

Clostridioides difficile has been recognized as a life-threatening pathogen that causes enteric diseases, including antibiotic-associated diarrhea and pseudomembranous colitis. The severity of C. difficile infection (CDI) correlates with toxin production and antibiotic resistance of C. difficile. In Thailand, the data addressing ribotypes, toxigenic, and antimicrobial susceptibility profiles of this pathogen are scarce and some of these data sets are limited. In this study, two groups of C. difficile isolates in Thailand, including 50 isolates collected from 2006 to 2009 (THA group) and 26 isolates collected from 2010 to 2012 (THB group), were compared for toxin genes and ribotyping profiles. The production of toxins A and B were determined on the basis of toxin gene profiles. In addition, minimum inhibitory concentration of eight antibiotics were examined for all 76 C. difficile isolates. The isolates of the THA group were categorized into 27 A-B+CDT- (54%) and 23 A-B-CDT- (46%), while the THB isolates were classified into five toxigenic profiles, including six A+B+CDT+ (23%), two A+B+CDT- (8%), five A-B+CDT+ (19%), seven A-B+CDT- (27%), and six A-B-CDT- (23%). By visually comparing them to the references, only five ribotypes were identified among THA isolates, while 15 ribotypes were identified within THB isolates. Ribotype 017 was the most common in both groups. Interestingly, 18 unknown ribotyping patterns were identified. Among eight tcdA-positive isolates, three isolates showed significantly greater levels of toxin A than the reference strain. The levels of toxin B in 3 of 47 tcdB-positive isolates were significantly higher than that of the reference strain. Based on the antimicrobial susceptibility test, metronidazole showed potent efficiency against most isolates in both groups. However, high MIC values of cefoxitin (MICs 256 µg/mL) and chloramphenicol (MICs ≥ 64 µg/mL) were observed with most of the isolates. The other five antibiotics exhibited diverse MIC values among two groups of isolates. This work provides evidence of temporal changes in both C. difficile strains and patterns of antimicrobial resistance in Thailand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...