Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37444346

RESUMO

The BRS Carmem grape was developed as an alternative for processing juices and wines. This study aimed to determine the phenolic compounds (PC) in the edible parts of this grape from two harvests-one harvested at ideal maturation time and another when the grapes were still immature-using HPLC-DAD-ESI-MS/MS. Student's t-test was used (α = 0.05) to evaluate differences in the PC content between the edible parts and between the harvests. Both skins showed a predominance of flavonols, anthocyanins, hydroxycinnamic acids derivatives (HCAD) and stilbenes, with higher concentrations for harvest 1 than harvest 2. For both harvests (harvest 1 and harvest 2), the HCAD (mg of caftaric acid•kg fruit-1) was higher in whole grapes (383.98 and 67.09) than in their skins (173.95 and 21.74), with a predominance of trans-caffeic acid for all samples; the flavan-3-ols and proanthocyanidins (mg of (+)-catechin•kg fruit-1) presented higher concentrations in the seeds (flavan-3-ols: 203.20 and 182.71, proanthocyanidins: 453.57 and 299.86) than in the skins (flavan-3-ols: 1.90 and 4.56, proanthocyanidins: 37.58 and 98.92); the stilbenes concentration (µg 3-glc-resveratrol•kg fruit-1) was higher for the seeds from harvest 2 (896.25) than those from harvest 1 (48.67). BRS Carmem grapes contain a phenolic composition complex, and still have a relevant concentration of flavonols, anthocyanins and stilbenes, even when immature.

2.
J Food Sci Technol ; 54(8): 2594-2601, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28740317

RESUMO

The odor-active compounds of the conventional yellow passion fruit influence the aroma during ripeness and the acceptance of the juice. HS-GC-MS and GC-OSME analysis and sensory acceptance of the conventional passion fruit from different stages of ripeness were studied to characterize the aroma of the fruit and, aroma and flavor of the juice. Ethyl butanoate, ethyl hexanoate and propyl acetate showed high odoriferous importance in the passion fruit from the 1/3 yellow skin color. Cis-3-hexen-1-ol and diethyl carbonate plus the odor-active compounds from the 1/3 yellow skin color showed high odoriferous importance in the 2/3 yellow skin color, and butyl acetate and alpha-terpineol plus the same odor-active compounds from 2/3 were the most important for the 3/3 yellow skin color. There was difference in the aroma and flavor of the juices, with higher acceptance means for the passion fruit from the 3/3 yellow skin color. The passion fruit volatile compounds peak area, odoriferous intensity and sensory acceptance of the juices increased during ripeness, indicating that the conventional passion fruit characteristic aroma is completely expressed when the fruit reaches the whole maturation, at the 3/3 yellow skin color.

3.
J Sci Food Agric ; 92(9): 1886-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22231493

RESUMO

BACKGROUND: This work aimed to investigate the influence of both ripening stage and cultivation system on the total phenolic compounds (TPC) and total antioxidant activity (TAA) of passion fruit pulp. TPC extraction was optimized using a 2³ central composed design. The variables were fruit pulp volume, methanol volume and extraction solution volume. TPC was determined using the Folin-Ciocalteu reaction, and TAA using the ABTS radical reaction. RESULTS: The conditions to extract TPC were 2 mL passion fruit pulp and 9 mL extraction solution containing 40% methanol:water (v/v). TPC values increased in the passion fruit pulp during ripening for both cultivation systems, ranging from 281.8 to 361.9 mg gallic acid L⁻¹ (P ≤ 0.05) for the organic pulp and from 291.0 to 338.6 mg gallic acid L⁻¹ (P ≤ 0.05) for the conventional pulp. CONCLUSION: TPC values increased during ripening for both organic and conventional passion fruit. The same was true for TAA values for conventional passion fruit. For organic passion fruit, however, TAA values were highest at the initial ripening stages. These results suggest that antioxidant compounds exert strong influence on the initial ripening stages for organic passion fruit, when TPC still did not reach its maximum level.


Assuntos
Agricultura/métodos , Antioxidantes/metabolismo , Frutas/química , Passiflora/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Benzotiazóis , Alimentos Orgânicos , Frutas/crescimento & desenvolvimento , Agricultura Orgânica/métodos , Passiflora/crescimento & desenvolvimento , Fenóis/análise , Extratos Vegetais/análise , Ácidos Sulfônicos/metabolismo , Tiazóis/metabolismo
4.
J Sci Food Agric ; 91(10): 1801-9, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21681760

RESUMO

BACKGROUND: There is a considerable loss of volatile compounds during the thermal concentration of cashew apple juice, damaging product quality, and as yet there is little research on the subject. Thus the purpose of this research was to identify the aroma volatiles evaporated off from cashew apple juice and recovered in the water phase during concentration of this beverage in an industrial plant. Water phase volatiles were extracted using dichloromethane, concentrated under a nitrogen flow, separated by gas chromatography (GC) and identified by GC-mass spectrometry. In order to determine the contribution of each volatile to the cashew aroma, five trained judges evaluated the GC effluents using the Osme GC-olfactometry technique. RESULTS: 71 volatiles were identified; of these, 47 were odour active. Alcohols were preferentially recovered in the cashew water phase, notably heptanol, trans-3-hexen-1-ol and 3-methyl-1-butanol, representing 42% of the total chromatogram area and imparting green grass and fruity aroma notes to the water phase. Esters represented 21% of the total chromatogram area, especially ethyl 2-hydroxyhexanoate, ethyl trans-2-butenoate and ethyl 2-methylbutanoate, and were responsible for the fruity/cashew-like aroma of the water phase. On the other hand, 3-methylbutanoic and 2-methylbutanoic acids were the volatiles that presented the greatest odour impact in the GC effluents of the water phase. CONCLUSION: Overall, the results of the present study strongly indicated that further concentration of the esters recovered in the water phase, either by partial distillation or by alternative technologies such as pervaporation, could generate a higher-quality natural cashew apple essence.


Assuntos
Anacardium/química , Frutas/química , Odorantes/análise , Preparações de Plantas/química , Compostos Orgânicos Voláteis/análise , Ácidos/análise , Álcoois/análise , Bebidas , Ésteres/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...