Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(21): e2201826, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35993391

RESUMO

3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30-500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers of poly(ɛ-caprolactone) (PCL) microfibers (9.7 ± 0.2 µm) made via melt electrowriting (MEW) are used to reinforce the HA-SH matrix which has an elastic modulus of 95 Pa. The neuronal viability is low in pure HA-SH matrix, however, when astrocytes are pre-seeded below this reinforced construct, they significantly support neuronal survival, network formation quantified by neurite length, and neuronal firing shown by Ca2+ imaging. The astrocyte-seeded HA-SH matrix is able to match the neuronal viability to the level of Matrigel, a gold standard matrix for neuronal culture for over two decades. Thus, this 3D MEW frame reinforced HA-SH composite with neurons and astrocytes constitutes a reliable and reproducible system to further study brain diseases.


Assuntos
Matriz Extracelular , Ácido Hialurônico , Neuritos , Neurônios , Sobrevivência Celular
2.
Front Synaptic Neurosci ; 13: 727406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899260

RESUMO

Fluorescence labeling of difficult to access protein sites, e.g., in confined compartments, requires small fluorescent labels that can be covalently tethered at well-defined positions with high efficiency. Here, we report site-specific labeling of the extracellular domain of γ-aminobutyric acid type A (GABA-A) receptor subunits by genetic code expansion (GCE) with unnatural amino acids (ncAA) combined with bioorthogonal click-chemistry labeling with tetrazine dyes in HEK-293-T cells and primary cultured neurons. After optimization of GABA-A receptor expression and labeling efficiency, most effective variants were selected for super-resolution microscopy and functionality testing by whole-cell patch clamp. Our results show that GCE with ncAA and bioorthogonal click labeling with small tetrazine dyes represents a versatile method for highly efficient site-specific fluorescence labeling of proteins in a crowded environment, e.g., extracellular protein domains in confined compartments such as the synaptic cleft.

3.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680293

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. METHODS: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. RESULTS: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. CONCLUSIONS: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.

4.
J Neurochem ; 159(1): 101-115, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34263932

RESUMO

Naturally occurring compounds such as sesquiterpenes and sesquiterpenoids (SQTs) have been shown to modulate GABAA receptors (GABAA Rs). In this study, the modulatory potential of 11 SQTs at GABAA Rs was analyzed to characterize their potential neurotropic activity. Transfected HEK293 cells and primary hippocampal neurons were functionally investigated using electrophysiological whole-cell recordings. Significantly different effects of ß-caryophyllene and α-humulene, as well as their respective derivatives ß-caryolanol and humulol, were observed in the HEK293 cell system. In neurons, the concomitant presence of phasic and tonic GABAA R configurations accounts for differences in receptor modulation by SQTs. The in vivo presence of the γ2 and δ subunits is important for SQT modulation. While phasic GABAA receptors in hippocampal neurons exhibited significantly altered GABA-evoked current amplitudes in the presence of humulol and guaiol, negative allosteric potential at recombinantly expressed α1 ß2 γ2 receptors was only verified for humolol. Modeling and docking studies provided support for the binding of SQTs to the neurosteroid-binding site of the GABAA R localized between transmembrane segments 1 and 3 at the (+ α)-(- α) interface. In sum, differences in the modulation of GABAA R isoforms between SQTs were identified. Another finding is that our results provide an indication that nutritional digestion affects the neurotropic potential of natural compounds.


Assuntos
Antagonistas de Receptores de GABA-A/farmacologia , Simulação de Acoplamento Molecular/métodos , Extratos Vegetais/farmacologia , Receptores de GABA-A/fisiologia , Sesquiterpenos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Feminino , Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/isolamento & purificação , Células HEK293 , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Gravidez , Receptores de GABA-A/química , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação
5.
PLoS One ; 15(6): e0234080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479525

RESUMO

In the present study we have characterized the biophysical properties of wild-type (WT) α1ß2 and α3ß2 GABAA receptors and probed the molecular basis for the observed differences. The activation and desensitization behavior and the residual currents of the receptors expressed in HEK293 cells were determined in whole-cell patch clamp recordings. Kinetic parameters of α1ß2 and α3ß2 activation differed significantly, with α1ß2 and α3ß2 exhibiting rise times (10-90%) of 24 ± 2 ms and 51 ± 7 ms, respectively. In contrast, the two receptors exhibited largely comparable desensitization behavior with decay currents that could be fitted to exponential functions with two or three components. Most notably, the two receptor compositions displayed different degrees of desentization, with the residual currents of α1ß2 and α3ß2 constituting 34 ± 2% and 21 ± 2% of the peak current, respectively. The respective contributions of the extracellular domains and the transmembrane/intracellular domains of the α-subunit to these physiological profiles were next assessed in recordings from cells expressing αß2 receptors comprising chimeric α-subunits. The rise times displayed by α1ECD/α3TMDß2 and α3ECD/α1TMDß2 receptors were intermediate to those of WT α1ß2 and WT α3ß2, and the distribution of the different components of the current decays exhibited by the two chimeric receptors followed the same pattern as the two WT receptors. The residual current exhibited by α1ECD/α3TMDß2 (23 ± 3%) was similar to that of α3ß2 but significantly different from that of α1ß2, whereas the residual current displayed by α3ECD/α1TMDß2 (27 ± 2%) was intermediate to and did not differ significantly from either of the WT receptors. This points to molecular differences in the transmembrane/intracellular domains of the α-subunit as the main determinants of the observed differences in receptor physiology between α1ß2 and α3ß2 receptors.


Assuntos
Receptores de GABA-A/metabolismo , Potenciais de Ação/efeitos dos fármacos , Células HEK293 , Humanos , Rim/fisiologia , Cinética , Técnicas de Patch-Clamp , Domínios Proteicos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/farmacologia
6.
Adv Healthc Mater ; 9(9): e1901630, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32181992

RESUMO

Impairments in neuronal circuits underly multiple neurodevelopmental and neurodegenerative disorders. 3D cell culture models enhance the complexity of in vitro systems and provide a microenvironment closer to the native situation than with 2D cultures. Such novel model systems will allow the assessment of neuronal network formation and their dysfunction under disease conditions. Here, mouse cortical neurons are cultured from embryonic day E17 within in a fiber-reinforced matrix. A soft Matrigel with a shear modulus of 31 ± 5.6 Pa is reinforced with scaffolds created by melt electrowriting, improving its mechanical properties and facilitating the handling. Cortical neurons display enhance cell viability and the neuronal network maturation in 3D, estimated by staining of dendrites and synapses over 21 days in vitro, is faster in 3D compared to 2D cultures. Using functional readouts with electrophysiological recordings, different firing patterns of action potentials are observed, which are absent in the presence of the sodium channel blocker, tetrodotoxin. Voltage-gated sodium currents display a current-voltage relationship with a maximum peak current at -25 mV. With its high customizability in terms of scaffold reinforcement and soft matrix formulation, this approach represents a new tool to study neuronal networks in 3D under normal and, potentially, disease conditions.


Assuntos
Neurogênese , Neurônios , Potenciais de Ação , Animais , Técnicas de Cultura de Células , Células Cultivadas , Camundongos , Impressão Tridimensional
7.
Adv Healthc Mater ; 8(5): e1801226, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30637979

RESUMO

2D electrophysiology is often used to determine the electrical properties of neurons. In the brain however, neurons form extensive 3D networks. Thus, performing electrophysiology in a 3D environment provides a closer situation to the physiological condition and serves as a useful tool for various applications in the field of neuroscience. In this study, 3D electrophysiology is established within a fiber-reinforced matrix to enable fast readouts from transfected cells, which are often used as model systems for 2D electrophysiology. Using melt electrowriting (MEW) of scaffolds to reinforce Matrigel, 3D electrophysiology is performed on a glycine receptor-transfected Ltk-11 mouse fibroblast cell line. The glycine receptor is an inhibitory ion channel associated when mutated with impaired neuromotor behavior. The average thickness of the MEW scaffold is 141.4 ± 5.7 µm, using 9.7 ± 0.2 µm diameter fibers, and square pore spacings of 100, 200, and 400 µm. For the first time, the electrophysiological characterization of glycine receptor-transfected cells is demonstrated with respect to agonist efficacy and potency in a 3D matrix. With the MEW scaffold reinforcement not interfering with the electrophysiological measurement, this approach can now be further adapted and developed for different kinds of neuronal cultures to study and understand pathological mechanisms under disease conditions.


Assuntos
Colágeno/metabolismo , Colágeno/fisiologia , Laminina/metabolismo , Laminina/fisiologia , Proteoglicanas/metabolismo , Proteoglicanas/fisiologia , Animais , Linhagem Celular , Combinação de Medicamentos , Eletrofisiologia/métodos , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Receptores de Glicina/metabolismo , Engenharia Tecidual/métodos
8.
Front Mol Neurosci ; 11: 291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186111

RESUMO

Ionotropic glycine receptors (GlyRs) enable fast synaptic neurotransmission in the adult spinal cord and brainstem. The inhibitory GlyR is a transmembrane glycine-gated chloride channel. The immature GlyR protein undergoes various processing steps, e.g., folding, assembly, and maturation while traveling from the endoplasmic reticulum to and through the Golgi apparatus, where post-translational modifications, e.g., glycosylation occur. The mature receptors are forward transported via microtubules to the cellular surface and inserted into neuronal membranes followed by synaptic clustering. The normal life cycle of a receptor protein includes further processes like internalization, recycling, and degradation. Defects in GlyR life cycle, e.g., impaired protein maturation and degradation have been demonstrated to underlie pathological mechanisms of various neurological diseases. The neurological disorder startle disease is caused by glycinergic dysfunction mainly due to missense mutations in genes encoding GlyR subunits (GLRA1 and GLRB). In vitro studies have shown that most recessive forms of startle disease are associated with impaired receptor biogenesis. Another neurological disease with a phenotype similar to startle disease is a special form of stiff-person syndrome (SPS), which is most probably due to the development of GlyR autoantibodies. Binding of GlyR autoantibodies leads to enhanced receptor internalization. Here we focus on the normal life cycle of GlyRs concentrating on assembly and maturation, receptor trafficking, post-synaptic integration and clustering, and GlyR internalization/recycling/degradation. Furthermore, this review highlights findings on impairment of these processes under disease conditions such as disturbed neuronal ER-Golgi trafficking as the major pathomechanism for recessive forms of human startle disease. In SPS, enhanced receptor internalization upon autoantibody binding to the GlyR has been shown to underlie the human pathology. In addition, we discuss how the existing mouse models of startle disease increased our current knowledge of GlyR trafficking routes and function. This review further illuminates receptor trafficking of GlyR variants originally identified in startle disease patients and explains changes in the life cycle of GlyRs in patients with SPS with respect to structural and functional consequences at the receptor level.

9.
Front Mol Neurosci ; 11: 154, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867346

RESUMO

Glycine receptors (GlyRs) are important mediators of fast inhibitory neurotransmission in the mammalian central nervous system. Their function is controlled by multiple cellular mechanisms, including intracellular regulatory processes. Modulation of GlyR function by protein kinases has been reported for many cell types, involving different techniques, and often yielding contradictory results. Here, we studied the effects of protein kinase C (PKC) and cAMP-dependent protein kinase A (PKA) on glycine induced currents in HEK293 cells expressing human homomeric α1 and heteromeric α1-ß GlyRs using whole-cell patch clamp techniques as well as internalization assays. In whole-cell patch-clamp measurements, modulators were applied in the intracellular buffer at concentrations between 0.1 µM and 0.5 µM. EC50 of glycine increased upon application of the protein kinase activators Forskolin and phorbol-12-myristate-13-acetate (PMA) but decreased in the presence of the PKC inhibitor Staurosporine aglycon and the PKA inhibitor H-89. Desensitization of recombinant α1 receptors was significantly increased in the presence of Forskolin. Staurosporine aglycon, on the other hand decreased desensitization of heteromeric α1-ß GlyRs. The time course of receptor activation was determined for homomeric α1 receptors and revealed two simultaneous effects: cells showed a decrease of EC50 after 3-6 min of establishing whole-cell configuration. This effect was independent of protein kinase modulators. All modulators of PKA and PKC, however, produced an additional shift of EC50, which overlay and eventually exceeded the cells intrinsic variation of EC50. The effect of kinase activators was abolished if the corresponding inhibitors were co-applied, consistent with PKA and PKC directly mediating the modulation of GlyR function. Direct effects of PKA- and PKC-modulators on receptor expression on transfected HEK cells were monitored within 15 min of drug application, showing a significant increase of receptor internalization with PKA and PKC activators, while the corresponding inhibitors had no significant effect on receptor surface expression or internalization. Our results confirm the observation that phosphorylation via PKA and PKC has a direct effect on the GlyR ion channel complex and plays an important role in the fine-tuning of glycinergic signaling.

10.
Biol Chem ; 399(6): 549-563, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29408795

RESUMO

GABAA receptors are ligand-gated anion channels that form pentameric arrangements of various subunits. Positive allosteric modulators of GABAA receptors have been reported as being isolated either from plants or synthesized analogs of known GABAA receptor targeting drugs. Recently, we identified monoterpenes, e.g. myrtenol as a positive allosteric modulator at α1ß2 GABAA receptors. Here, along with pharmacophore-based virtual screening studies, we demonstrate that scaffold modifications of myrtenol resulted in the loss of modulatory activity. Two independent approaches, fluorescence-based compound analysis and electrophysiological recordings in whole-cell configurations were used for analysis of transfected cells. C-atoms 1 and 2 of the myrtenol backbone were identified as crucial to preserve positive allosteric potential. A modification at C-atom 2 and lack of the hydroxyl group at C-atom 1 exhibited significantly reduced GABAergic currents at α1ß2, α1ß2γ, α2ß3, α2ß3γ and α4ß3δ receptors. This effect was independent of the γ2 subunit. A sub-screen with side chain length and volume differences at the C-atom 1 identified two compounds that inhibited GABAergic responses but without receptor subtype specificity. Our combined approach of pharmacophore-based virtual screening and functional readouts reveals that side chain modifications of the bridged six-membered ring structure of myrtenol are crucial for its modulatory potential at GABAA receptors.


Assuntos
Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/farmacologia , Monoterpenos/química , Monoterpenos/farmacologia , Receptores de GABA-A/metabolismo , Regulação Alostérica/efeitos dos fármacos , Monoterpenos Bicíclicos , Células HEK293 , Humanos , Estrutura Molecular
11.
Front Mol Neurosci ; 10: 322, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062270

RESUMO

Ligand-binding of Cys-loop receptors results in rearrangements of extracellular loop structures which are further translated into the tilting of membrane spanning helices, and finally opening of the ion channels. The cryo-EM structure of the homopentameric α1 glycine receptor (GlyR) demonstrated an involvement of the extracellular ß8-ß9 loop in the transition from ligand-bound receptors to the open channel state. Recently, we identified a functional role of the ß8-ß9 loop in a novel startle disease mouse model shaky. The mutation of residue GlyRα1Q177 to lysine present in shaky mice resulted in reduced glycine potency, reduced synaptic expression, and a disrupted hydrogen network at the structural level around position GlyRα1Q177. Here, we investigated the role of amino acid volume, side chain length, and charge at position Q177 to get deeper insights into the functional role of the ß8-ß9 loop. We used a combined approach of in vitro expression analysis, functional electrophysiological recordings, and GlyR modeling to describe the role of Q177 for GlyR ion channel function. GlyRα1Q177 variants do not disturb ion channel transport to the cellular surface of transfected cells, neither in homomeric nor in heteromeric GlyR configurations. The EC50 values were increased for all GlyRα1Q177 variants in comparison to the wild type. The largest decrease in glycine potency was observed for the variant GlyRα1Q177R. Potencies of the partial agonists ß-alanine and taurine were also reduced. Our data are further supported by homology modeling. The GlyRα1Q177R variant does not form hydrogen bonds with the surrounding network of residue Q177 similar to the substitution with a basic lysine present in the mouse mutant shaky. Among all investigated Q177 mutants, the neutral exchange of glutamine to asparagine as well as the introduction of the closely related amino acid glutamic acid preserve the hydrogen bond network. Introduction of amino acids with small side chains or larger volume resulted in a loss of their hydrogen bonds to neighboring residues. The ß8-ß9 loop is thus an important structural and functional determinant of the inhibitory GlyR.

12.
Front Chem ; 5: 46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680877

RESUMO

Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory α1ß2 GABAA receptors in various expression systems. However, in plants or humans, i.e., following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which may affect the modulatory efficacy of the generated linalool derivatives. Here, we analyzed the modulatory potential of linalool derivatives at α1ß2γ2 GABAA receptors upon transient overexpression. Following receptor expression control, electrophysiological recordings in a whole cell configuration were used to determine the chloride influx upon co-application of GABA EC10-30 together with the modulatory substance. Our results show that only oxygenated linalool metabolites at carbon 8 positively affect GABAergic currents whereas derivatives hydroxylated or carboxylated at carbon 8 were rather ineffective. Acetylated linalool derivatives resulted in non-significant changes of GABAergic currents. We can conclude that metabolism of linalool reduces its positive allosteric potential at GABAA receptors compared to the significant potentiation effects of the parent molecule linalool itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...