Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38391709

RESUMO

Structural plasticity changes and functional differences in executive control tasks have been reported in bilinguals compared to monolinguals, supporting a proposed bilingual 'advantage' in executive control functions (e.g., task switching) due to continual usage of control mechanisms that inhibit one of the coexisting languages. However, it remains unknown whether these differences are also apparent in the spatial domain. The present fMRI study explores the use of spatial cues in 15 bilinguals and 14 monolinguals while navigating in an open-field virtual environment. In each trial, participants had to navigate towards a target object that was visible during encoding but hidden in retrieval. An extensive network was activated in bilinguals compared to monolinguals in the encoding and retrieval phase. During encoding, bilinguals activated the right temporal and left parietal regions (object trials) and left inferior frontal, precentral, and lingual regions more than monolinguals. During retrieval, the same contrasts activated the left caudate nucleus and the right dorsolateral prefrontal cortex (DLPFC), the left parahippocampal gyrus, as well as caudate regions. These results suggest that bilinguals may recruit neural networks known to subserve not only executive control processes but also spatial strategies.

2.
Nutrients ; 14(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014828

RESUMO

Various lifestyle factors, including diet, physical activity, and sleep, have been studied in the context of children's health. However, how these lifestyle factors contribute to the development of cognitive abilities, including spatial cognition, remains vastly understudied. One landmark in spatial cognitive development occurs between 2.5 and 3 years of age. For spatial orientation at that age, children learn to use allocentric reference frames (using spatial relations between objects as the primary reference frame) in addition to, the already acquired, egocentric reference frames (using one's own body as the primary reference frame). In the current virtual reality study in a sample of 30-36-month-old toddlers (N = 57), we first demonstrated a marginally significant developmental shift in spatial orientation. Specifically, task performance with allocentric performance increased relative to egocentric performance (ηp2 = 0.06). Next, we explored a variety of lifestyle factors, including diet, in relation to task performance, to explain individual differences. Screen time and gestational weight gain of the mother were negatively associated with spatial task performance. The findings presented here can be used to guide future confirmatory studies about the role of lifestyle factors in the development of spatial cognition.


Assuntos
Orientação Espacial , Percepção Espacial , Pré-Escolar , Cognição , Humanos , Estilo de Vida , Análise e Desempenho de Tarefas
3.
Brain Sci ; 12(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35741661

RESUMO

The use of landmarks for navigation develops throughout childhood. Here, we examined the developmental trajectory of egocentric and allocentric navigation based on landmark information in an on-screen virtual environment in 39 5-6-year-olds, 43 7-8-year-olds, and 41 9-10-year-olds. We assessed both categorical performance, indicating the notion of location changes based on the landmarks, as well as metrical performance relating to the precision of the representation of the environment. We investigated whether age, sex, spatial working memory, verbal working memory, and verbal production of left and right contributed to the development of navigation skills. In egocentric navigation, Categorical performance was already above chance at 5 years of age and was positively related to visuo-spatial working memory and the production of left/right, whereas metrical performance was only related to age. Allocentric navigation started to develop between 5 and 8 years of age and was related to sex, with boys outperforming girls. Both boys and girls seemed to rely more on directional landmark information as compared to positional landmark information. To our knowledge, this study is the first to give insight into the relative contribution of different cognitive abilities to navigation skills in school-aged children.

4.
Hum Brain Mapp ; 42(18): 6000-6013, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34636105

RESUMO

Children's learning capabilities change while growing up. One framework that describes the cognitive and neural development of children's growing learning abilities is the two-component model. It distinguishes processes that integrate separate features into a coherent memory representation (associative component) and executive abilities, such as elaboration, evaluation, and monitoring, that support memory processing (strategic component). In an fMRI study using an object-location association paradigm, we investigated how the two components influence memory performance across development. We tested children (10-12 years, n = 31), late adolescents (18 years, n = 29), and adults (25+ years, n = 30). For studying the associative component, we also probed how the utilisation of prior knowledge (schemas) facilitates memory across age groups. Children had overall lower retrieval performance, while adolescents and adults did not differ from each other. All groups benefitted from schemas, but this effect did not differ between groups. Performance differences between groups were associated with deactivation of the dorsal medial prefrontal cortex (dmPFC), which in turn was linked to executive functioning. These patterns were stronger in adolescents and adults and seemed absent in children. Thus, the children's executive system, the strategic component, is not as mature and thus cannot facilitate memory performance in the same way as in adolescents/adults. In contrast, we did not find age-related differences in the associative component; with activity in the angular gyrus predicting memory performance systematically across groups. Overall, our results suggest that differences of executive rather than associative abilities explain memory differences between children, adolescents, and adults.


Assuntos
Aprendizagem por Associação/fisiologia , Mapeamento Encefálico , Função Executiva/fisiologia , Desenvolvimento Humano/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
5.
Brain Sci ; 11(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34356121

RESUMO

Sex differences are repeatedly observed in spatial cognition tasks. However, the role of environmental factors such as gaming experience remains unclear. In this exploratory study, navigation and object-relocation were combined in a naturalistic virtual reality-based spatial task. The sample consisted of n = 53 Dutch children aged 9-11 years. Overall, girls (n = 24) and boys (n = 29) performed equally accurately, although there was an increase in accuracy with age for boys (ηp2 = 0.09). Boys navigated faster than girls (ηp2 = 0.29), and this difference increased with age (ηp2 = 0.07). More gaming experience in boys versus girls (Cohen's d = 0.88) did not explain any result observed. We encourage future confirmatory studies to use the paradigm presented here to investigate the current results in a larger sample. These findings could be beneficial for optimizing spatial cognition training interventions.

6.
Front Hum Neurosci ; 14: 121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296321

RESUMO

The goal of the present study was to investigate spatial memory in a group of patients with amnesia due to Korsakoff's syndrome (KS). We used a virtual spatial memory task that allowed us to separate the use of egocentric and allocentric spatial reference frames to determine object locations. Research investigating the ability of patients with Korsakoff's amnesia to use different reference frames is scarce and it remains unclear whether these patients are impaired in using ego- and allocentric reference frames to the same extent. Twenty Korsakoff patients and 24 matched controls watched an animation of a bird flying in one of three trees standing in a virtual environment. After the bird disappeared, the camera turned around, by which the trees were briefly out of sight and then turned back to the center of the environment. Participants were asked in which tree the bird was hiding. In half of the trials, a landmark was shown. Half of the trials required an immediate response whereas in the other half a delay of 10 s was present. Patients performed significantly worse than controls. For all participants trials with a landmark were easier than without a landmark and trials without a delay were easier than with a delay. While controls were above chance on all trials patients were at chance in allocentric trials without a landmark present and with a memory delay. Patients showed no difference in the ego- and the allocentric condition. Together the findings suggest that despite the amnesia, spatial memory and especially the use of ego- and allocentric reference frames in Korsakoff patients are spared.

7.
Dev Cogn Neurosci ; 37: 100649, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31100507

RESUMO

Memory representations of words are thought to undergo changes with consolidation: Episodic memories of novel words are transformed into lexical representations that interact with other words in the mental dictionary. Behavioral studies have shown that this lexical integration process is enhanced when there is more time for consolidation. Neuroimaging studies have further revealed that novel word representations are initially represented in a hippocampally-centered system, whereas left posterior middle temporal cortex activation increases with lexicalization. In this study, we measured behavioral and brain responses to newly-learned words in children. Two groups of Dutch children, aged between 8-10 and 14-16 years, were trained on 30 novel Japanese words depicting novel concepts. Children were tested on word-forms, word-meanings, and the novel words' influence on existing word processing immediately after training, and again after a week. In line with the adult findings, hippocampal involvement decreased with time. Lexical integration, however, was not observed immediately or after a week, neither behaviorally nor neurally. It appears that time alone is not always sufficient for lexical integration to occur. We suggest that other factors (e.g., the novelty of the concepts and familiarity with the language the words are derived from) might also influence the integration process.


Assuntos
Encéfalo/fisiologia , Idioma , Semântica , Aprendizagem Verbal/fisiologia , Adolescente , Criança , Feminino , Humanos , Masculino
8.
J Cogn Neurosci ; 30(5): 621-633, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29393716

RESUMO

Like many other types of memory formation, novel word learning benefits from an offline consolidation period after the initial encoding phase. A previous EEG study has shown that retrieval of novel words elicited more word-like-induced electrophysiological brain activity in the theta band after consolidation [Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of Cognitive Neuroscience, 27, 1286-1297, 2015]. This suggests that theta-band oscillations play a role in lexicalization, but it has not been demonstrated that this effect is directly caused by the formation of lexical representations. This study used magnetoencephalography to localize the theta consolidation effect to the left posterior middle temporal gyrus (pMTG), a region known to be involved in lexical storage. Both untrained novel words and words learned immediately before test elicited lower theta power during retrieval than existing words in this region. After a 24-hr consolidation period, the difference between novel and existing words decreased significantly, most strongly in the left pMTG. The magnitude of the decrease after consolidation correlated with an increase in behavioral competition effects between novel words and existing words with similar spelling, reflecting functional integration into the mental lexicon. These results thus provide new evidence that consolidation aids the development of lexical representations mediated by the left pMTG. Theta synchronization may enable lexical access by facilitating the simultaneous activation of distributed semantic, phonological, and orthographic representations that are bound together in the pMTG.


Assuntos
Linguística , Consolidação da Memória/fisiologia , Lobo Temporal/fisiologia , Ritmo Teta , Adolescente , Adulto , Sincronização Cortical , Feminino , Humanos , Magnetoencefalografia , Masculino , Semântica , Adulto Jovem
9.
Hippocampus ; 27(4): 393-404, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28032685

RESUMO

Navigating through space is fundamental to human nature and requires the ability to retrieve relevant information from the remote past. With the passage of time, some memories become generic, capturing only a sense of familiarity. Yet, others maintain precision, even when acquired decades ago. Understanding the dynamics of memory consolidation is a major challenge to neuroscientists. Using functional magnetic resonance imaging, we systematically examined the effects of time and spatial context on the neural representation of landmark recognition memory. An equal number of male and female subjects (males N = 10, total N = 20) watched a route through a large-scale virtual environment. Landmarks occurred at navigationally relevant and irrelevant locations along the route. Recognition memory for landmarks was tested directly following encoding, 24 h later and 30 days later. Surprisingly, changes over time in the neural representation of navigationally relevant landmarks differed between males and females. In males, relevant landmarks selectively engaged the parahippocampal gyrus (PHG) regardless of the age of the memory. In females, the response to relevant landmarks gradually diminished with time in the PHG but strengthened progressively in the inferior frontal gyrus (IFG). Based on what is known about the functioning of the PHG and IFG, the findings of this study suggest that males maintain access to the initially formed spatial representation of landmarks whereas females become strongly dependent on a verbal representation of landmarks with time. Our findings yield a clear objective for future studies. © 2017 Wiley Periodicals, Inc.


Assuntos
Lobo Frontal/fisiologia , Consolidação da Memória/fisiologia , Giro Para-Hipocampal/fisiologia , Reconhecimento Psicológico/fisiologia , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Giro Para-Hipocampal/diagnóstico por imagem , Caracteres Sexuais , Fatores de Tempo , Realidade Virtual , Percepção Visual/fisiologia , Adulto Jovem
10.
Brain Lang ; 167: 44-60, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27291335

RESUMO

When a novel word is learned, its memory representation is thought to undergo a process of consolidation and integration. In this study, we tested whether the neural representations of novel words change as a function of consolidation by observing brain activation patterns just after learning and again after a delay of one week. Words learned with meanings were remembered better than those learned without meanings. Both episodic (hippocampus-dependent) and semantic (dependent on distributed neocortical areas) memory systems were utilised during recognition of the novel words. The extent to which the two systems were involved changed as a function of time and the amount of associated information, with more involvement of both systems for the meaningful words than for the form-only words after the one-week delay. These results suggest that the reason the meaningful words were remembered better is that their retrieval can benefit more from these two complementary memory systems.


Assuntos
Memória Episódica , Memória/fisiologia , Semântica , Percepção da Fala/fisiologia , Adolescente , Adulto , Encéfalo/fisiologia , Feminino , Hipocampo/fisiologia , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
11.
Eur J Neurosci ; 45(12): 1501-1511, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27717213

RESUMO

The brain-derived neurotrophic factor (BDNF) was shown to be involved in spatial memory and spatial strategy preference. A naturally occurring single nucleotide polymorphism of the BDNF gene (Val66Met) affects activity-dependent secretion of BDNF. The current event-related fMRI study on preselected groups of 'Met' carriers and homozygotes of the 'Val' allele investigated the role of this polymorphism on encoding and retrieval in a virtual navigation task in 37 healthy volunteers. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the invisible target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. The experiment consisted of blocks, informing participants of which trial type would be most likely to occur during retrieval. We observed no differences between genetic groups in task performance or time to complete the navigation tasks. The imaging results show that Met carriers compared to Val homozygotes activate the left hippocampus more during successful object location memory encoding. The observed effects were independent of non-significant performance differences or volumetric differences in the hippocampus. These results indicate that variations of the BDNF gene affect memory encoding during spatial navigation, suggesting that lower levels of BDNF in the hippocampus results in less efficient spatial memory processing.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Polimorfismo de Nucleotídeo Único , Navegação Espacial , Adulto , Hipocampo/fisiologia , Homozigoto , Humanos , Mutação de Sentido Incorreto
12.
Neuropsychologia ; 79(Pt A): 33-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26476370

RESUMO

Novel words can be recalled immediately and after little exposure, but require a post-learning consolidation period to show word-like behaviour such as lexical competition. This pattern is thought to reflect a qualitative shift from episodic to lexical representations. However, several studies have reported immediate effects of meaningful novel words on semantic processing, suggesting that integration of novel word meanings may not require consolidation. The current study synthesises and extends these findings by showing a dissociation between lexical and semantic effects on the electrophysiological (N400, LPC) response to novel words. The difference in N400 amplitude between novel and existing words (a lexical effect) decreased significantly after a 24-h consolidation period, providing novel support for the hypothesis that offline consolidation aids lexicalisation. In contrast, novel words preceded by semantically related primes elicited a more positive LPC response (a semantic-priming effect) both before and after consolidation, indicating that certain semantic effects can be observed even when words have not been fully lexicalised. We propose that novel meanings immediately start to contribute to semantic processing, but that the underlying neural processes may shift from strategic to more automatic with consolidation.


Assuntos
Potenciais Evocados/fisiologia , Memória/fisiologia , Semântica , Aprendizagem Verbal/fisiologia , Vocabulário , Adolescente , Adulto , Análise de Variância , Mapeamento Encefálico , Comportamento de Escolha/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
13.
Front Psychol ; 6: 224, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798119

RESUMO

The capacity to detect landmarks in the environment and to associate each landmark with its spatial context is a fundamental operation for navigation, especially when the context is relevant for successful navigation. Recent evidence suggests robust age-related improvements in contextual memory. The current study investigated the effect of spatial context on landmark recognition memory in children and adolescents. Participants, ages 8-18, watched a video depicting a route through a virtual environment. The location at which landmarks occurred was manipulated to test the hypothesis that memory processes vary as a function of context. Functional magnetic resonance imaging data was acquired while participants performed an old-new recognition memory test of the landmarks. Old compared to new landmarks recruited a network of regions including the hippocampus and the inferior/middle frontal gyrus in all participants. Developmental differences were observed in the functional organization of the parahippocampal gyrus and the anterior cingulate cortex, such that memory representations strengthened linearly with age only when the associated spatial context was relevant for navigation. These results support the view that medial temporal lobe regions become increasingly specialized with development; these changes may be responsible for the development of successful navigation strategies.

14.
J Cogn Neurosci ; 27(7): 1286-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25761007

RESUMO

The complementary learning systems account of word learning states that novel words, like other types of memories, undergo an offline consolidation process during which they are gradually integrated into the neocortical memory network. A fundamental change in the neural representation of a novel word should therefore occur in the hours after learning. The present EEG study tested this hypothesis by investigating whether novel words learned before a 24-hr consolidation period elicited more word-like oscillatory responses than novel words learned immediately before testing. In line with previous studies indicating that theta synchronization reflects lexical access, unfamiliar novel words elicited lower power in the theta band (4-8 Hz) than existing words. Recently learned words still showed a marginally lower theta increase than existing words, but theta responses to novel words that had been acquired 24 hr earlier were indistinguishable from responses to existing words. Consistent with evidence that beta desynchronization (16-21 Hz) is related to lexical-semantic processing, we found that both unfamiliar and recently learned novel words elicited less beta desynchronization than existing words. In contrast, no difference was found between novel words learned 24 hr earlier and existing words. These data therefore suggest that an offline consolidation period enables novel words to acquire lexically integrated, word-like neural representations.


Assuntos
Ritmo beta/fisiologia , Encéfalo/fisiologia , Consolidação da Memória/fisiologia , Ritmo Teta/fisiologia , Aprendizagem Verbal/fisiologia , Adolescente , Adulto , Sincronização Cortical/fisiologia , Tomada de Decisões/fisiologia , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Semântica , Vocabulário , Adulto Jovem
15.
Hippocampus ; 24(7): 853-68, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24706395

RESUMO

To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object-related spatial cues while 47 participants actively navigated in an open-field virtual environment. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the removed target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. Participants were informed in blocks about which type of retrieval trial was most likely to occur, thereby modulating expectations of having to rely on a single landmark or on a configuration of landmarks. How the spatial learning systems in the hippocampus and caudate nucleus were involved in these landmark-based encoding and retrieval processes were investigated. Landmark configurations can create a geometry similar to boundaries in an environment. It was found that the hippocampus was involved in encoding when relying on configurations of landmarks, whereas the caudate nucleus was involved in encoding when relying on single landmarks. This might suggest that the observed hippocampal activation for configurations of objects is linked to a spatial representation observed with environmental boundaries. Retrieval based on configurations of landmarks activated regions associated with the spatial updation of object locations for reorientation. When only a single landmark was available during retrieval, regions associated with updating the location of oneself were activated. There was also evidence that good between-participant performance was predicted by right hippocampal activation. This study therefore sheds light on how the brain deals with changing demands on spatial processing related purely to landmarks.


Assuntos
Núcleo Caudado/fisiologia , Sinais (Psicologia) , Hipocampo/fisiologia , Imageamento por Ressonância Magnética , Neuroimagem , Aprendizagem Espacial/fisiologia , Navegação Espacial/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
Neuroimage ; 84: 265-78, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23962957

RESUMO

The complementary learning systems account of declarative memory suggests two distinct memory networks, a fast-mapping, episodic system involving the hippocampus, and a slower semantic memory system distributed across the neocortex in which new information is gradually integrated with existing representations. In this study, we investigated the extent to which these two networks are involved in the integration of novel words into the lexicon after extensive learning, and how the involvement of these networks changes after 24h. In particular, we explored whether having richer information at encoding influences the lexicalization trajectory. We trained participants with two sets of novel words, one where exposure was only to the words' phonological forms (the form-only condition), and one where pictures of unfamiliar objects were associated with the words' phonological forms (the picture-associated condition). A behavioral measure of lexical competition (indexing lexicalization) indicated stronger competition effects for the form-only words. Imaging (fMRI) results revealed greater involvement of phonological lexical processing areas immediately after training in the form-only condition, suggesting that tight connections were formed between novel words and existing lexical entries already at encoding. Retrieval of picture-associated novel words involved the episodic/hippocampal memory system more extensively. Although lexicalization was weaker in the picture-associated condition, overall memory strength was greater when tested after a 24hour delay, probably due to the availability of both episodic and lexical memory networks to aid retrieval. It appears that, during lexicalization of a novel word, the relative involvement of different memory networks differs according to the richness of the information about that word available at encoding.


Assuntos
Aprendizagem por Associação/fisiologia , Hipocampo/fisiologia , Memória Episódica , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Semântica , Aprendizagem Verbal/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Adulto Jovem
17.
Hum Brain Mapp ; 35(6): 2561-72, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24038667

RESUMO

Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different navigational strategies. The ability to use different strategies might underlie navigational ability differences. This study examines the anatomical correlates of self-reported navigational ability in both gray and white matter. Local gray matter volume was compared between a group (N = 134) of good and bad navigators using voxel-based morphometry (VBM), as well as regional volumes. To compare between good and bad navigators, we also measured white matter anatomy using diffusion tensor imaging (DTI) and looked at fractional anisotropy (FA) values. We observed a trend toward higher local GM volume in right anterior parahippocampal/rhinal cortex for good versus bad navigators. Good male navigators showed significantly higher local GM volume in right hippocampus than bad male navigators. Conversely, bad navigators showed increased FA values in the internal capsule, the white matter bundle closest to the caudate nucleus and a trend toward higher local GM volume in the caudate nucleus. Furthermore, caudate nucleus regional volume correlated negatively with navigational ability. These convergent findings across imaging modalities are in line with findings showing that the caudate nucleus and the medial temporal lobes are involved in different wayfinding strategies. Our study is the first to show a link between self-reported large-scale navigational abilities and different measures of brain anatomy.


Assuntos
Encéfalo/anatomia & histologia , Substância Cinzenta/anatomia & histologia , Navegação Espacial , Substância Branca/anatomia & histologia , Adolescente , Adulto , Fatores Etários , Anisotropia , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Tamanho do Órgão , Fatores Sexuais , Inquéritos e Questionários , Adulto Jovem
18.
Front Psychol ; 4: 904, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24368903

RESUMO

In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2-3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences.

19.
Brain Behav ; 3(6): 729-37, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24363975

RESUMO

BACKGROUND: Fast detection and identification of objects in an environment is important for using objects as landmarks during navigation. While adults rapidly process objects within an environment and use landmarks during navigation, infants do not routinely use distal landmarks below the age of 18 months. In the current event-related potential (ERP) study we adopted an oddball paradigm to examine whether infants are capable of processing objects in environments, which is a prerequisite for using objects as landmarks. METHODS: We measured the electrophysiological correlates and time courses related to the processing of changes in object location, object identity, and a switch of two objects. RESULTS: Twelve-month-old infants showed an Nc (negative central) effect reflecting increased attention likely caused by initial change detection within 300 msec for all three manipulations. In addition, they showed conscious processing of an object change and a location change as evidenced by a positive slow wave (PSW). CONCLUSION: This study is the first to show that infants are capable of rapidly detecting changes in single objects when these are presented in an environment, but lack conscious detection of a switch. These results indicate that 12-month-old infants as yet lack the ability to rapidly bind the identity and location of multiple objects within an environment.

20.
PLoS One ; 7(7): e41180, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815960

RESUMO

The ability to quickly detect changes in our surroundings has been crucial to human adaption and survival. In everyday life we often need to identify whether an object is new and if an object has changed its location. In the current event-related potential (ERP) study we investigated the electrophysiological correlates and the time course in detecting different types of changes of an objects location and identity. In a delayed match-to-sample task participants had to indicate whether two consecutive scenes containing a road, a house, and two objects, were either the same or different. In six randomly intermixed conditions the second scene was identical, one of the objects had changed its identity, one of the objects had changed its location, or the objects had switched locations. The results reveal different time courses for the processing of identity and location changes in spatial scenes. Whereas location changes elicited a posterior N2 effect, indicating early mismatch detection, followed by a P3 effect reflecting post-perceptual processing, identity changes elicited an anterior N3 effect, which was delayed and functionally distinct from the N2 effect found for the location changes. The condition in which two objects switched position elicited a late ERP effect, reflected by a P3 effect similar to that obtained for the location changes. In sum, this study is the first to cohesively show different time courses for the processing of location changes, identity changes, and object switches in spatial scenes, which manifest themselves in different electrophysiological correlates.


Assuntos
Mapeamento Encefálico/métodos , Eletrofisiologia/métodos , Percepção Espacial/fisiologia , Adolescente , Adulto , Atenção/fisiologia , Simulação por Computador , Potenciais Evocados , Feminino , Humanos , Imageamento Tridimensional , Masculino , Neurofisiologia/métodos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...