Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
AIMS Public Health ; 8(4): 754-775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786433

RESUMO

This study aimed to formulate sodium lauryl sulfate cross-linked chitosan beads and sodium alginate-chitosan films for designing a dressing that would shorten the healing time of skin wounds. Teucrium polium extract-loaded chitosan-sodium lauryl sulfate beads (CH-SLS) and chitosan-alginate (CH-ALG) films were prepared and characterized by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The swelling properties of the CH-SLS beads were also analyzed in a water solution. The obtained Teucrium polium extract-loaded CH-SLS beads and CH-ALG films (TBF) were further incorporated into the commercial adhesive dressing. This TBF wound dressing was then investigated for evaluation of its wound healing potential in the mice using the excision wound model. Healing was assessed by the macroscopic appearance and the rate of wound contraction during 8 days. On day 4, the TBF-treated wounds exhibited 98% reduction in the wound area when they were compared with healing ointment, elastic adhesive dressing, and untreated wounds which were exhibited 63%, 43%, and 32%, respectively. Furthermore, the application of TBF dressing reduced skin wound rank scores and increased the percentage of wounds contraction. These results demonstrate that TBF dressing improves considerably the healing rate and the macroscopic wound appearance at a short delay and this application may have therapeutic benefits in wound healing.

2.
J Air Waste Manag Assoc ; 70(11): 1186-1197, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915095

RESUMO

The random discharge of marine fish waste into the coast generates environmental pollution. However, a better valorization of these by-products leads to the extraction of sustainable biomolecules. Chitosan is a natural biopolymer that can be produced from various marine by-products, in particular the crustacean shells, crabs, and fish scales. The aim of this current study is the extraction of chitin and characterization of chitosan obtained after a deacetylation reaction from sardine scales (S. pilchardus) as a new marine source. The ß form of chitin extracted undergoes deacetylation in 40% NaOH at 121°C for 20 min. The chemical structure of obtained chitosan was characterized based on Fourier transforms infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscope (SEM), and Energy-dispersive X-ray spectroscopy (EDS). The physicochemical properties of obtained chitosan such as the ash, moisture, nitrogen, solubility, molecular weight, fat, and water-binding capacity were also determined. According to the results of FTIR and XRD analysis, the degree of deacetylation (DDA), and the crystalline index (CrI) value of obtained chitosan is respectively about 87% and 95%. The SEM and EDS analysis revealed respectively fibrillar and pleated morphology with the presence of three major elements characterizing the chitosan, which are C, O, and N. The physicochemical analysis showed that the rate of ash, moisture, and nitrogen in obtained chitosan were respectively about 0.10, 0.34, and 7%. The solubility, molecular weight, fat, and water-binding capacity of produced chitosan were found to be 93%, 5.86 kDa, 310, and 510% respectively. Sardina pilchardus scales could be considered a promising and alternative source of chitin and chitosan, which will be applicable in a large number of fields. Implications: Direct rejection of marine biowaste as fish scales in nature, port, or fish processing plants, is a dramatic problem that is growing day after day. These uncontrollable discharges cause marine pollution and promote bacterial growth, which leads to a degradation of the soil and air quality. Taking into account the objectives of sustainable development, better development of these by-products would make it possible to produce valuable biomaterials that will be applied in various fields and which have benefits for the environment and humans. The central objective of this research is accentuated on the enhancement of Sardina pilchardus scales; by the conversion of chitin into chitosan and the determination of its physicochemical characterization. The obtained chitosan from Sardina pilchardus scales could be applied in the agricultural and food industry.


Assuntos
Quitina/química , Peixes , Acetilação , Animais , Quitina/ultraestrutura , Microscopia Eletrônica de Varredura , Peso Molecular , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...