Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 39(15): 5661-73, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16124301

RESUMO

In this study, a comparison is made of polar organic compounds found in the field with those produced in secondary organic aerosol from laboratory irradiations of natural hydrocarbons and oxides of nitrogen (NOx). The field samples comprised atmospheric particulate matter (PM2.5) collected at Research Triangle Park (RTP), NC, during the summer of 2003, and the laboratory samples originated from the photooxidation of the following monoterpenes: alpha-pinene, beta-pinene, and d-limonene. To determine the structural characteristics of the polar compounds, the filter samples were solvent extracted and derivatized using a technique based on single and multistep derivatizations. The resulting compound derivatives were analyzed by GC-MS in the methane-Cl and El modes. In addition to previously reported biogenic oxidation products (pinic acid, pinonic acid, norpinic acid, nopinone, and pinonaldehyde), seven multifunctional organic compounds were found in both field and laboratory samples. These compounds, which are proposed as possible atmospheric tracers for secondary organic aerosol from monoterpenes, were consistent with the following identifications: 3-isopropyl pentanedioic acid; 3-acetyl pentanedioic acid; 3-carboxy heptanedioic acid; 3-acetyl hexanedioic acid; 2-isopropyl-1,2-dihydroxybutanol; 4-isopropyl-2,4-dihydroxyhexanol; and 3-(2-hydroxy-ethyl)-2,2-dimethyl-cyclobutane carboxylic acid. Initial attempts have been made to quantify the concentrations of these tracer compounds on the basis of surrogate compound calibrations. The occurrence of these compounds in both laboratory and field measurements suggests that secondary organic aerosol originating from biogenic hydrocarbons are contributing to the regional aerosol burden in the southeastern United States. Several of these compounds also appear to contribute to the global aerosol burden in that they have also been identified in Europe and Brazil.


Assuntos
Poluentes Atmosféricos/análise , Ar/análise , Álcoois/análise , Ácidos Carboxílicos/análise , Monitoramento Ambiental/métodos , Monoterpenos/análise , Aerossóis , Poluentes Atmosféricos/efeitos da radiação , Álcoois/efeitos da radiação , Ácidos Carboxílicos/efeitos da radiação , Cromatografia Gasosa-Espectrometria de Massas , Modelos Químicos , Estrutura Molecular , Monoterpenos/efeitos da radiação , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/efeitos da radiação , North Carolina , Oxirredução , Tamanho da Partícula , Fotoquímica , Estações do Ano , Raios Ultravioleta
2.
Anal Chem ; 76(16): 4765-78, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15307788

RESUMO

In this study, a new analytical technique was developed for the identification and quantification of multifunctional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) of the multifunctional compound using an alcohol (e.g., methanol, 1-butanol) in the presence of a relatively strong Lewis acid (BF3) as a catalyst. This esterification reaction quickly and quantitatively converts carboxylic acids to their ester forms. The second step is based on silylation of the ester compounds using bis(trimethylsilyl) trifluoroacetamide (BSTFA) as the derivatizing agent. For compounds bearing ketone groups in addition to carboxylic and hydroxyl groups, a third step was used based on PFBHA derivatization of the carbonyls. Different parameters including temperature, reaction time, and effect due to artifacts were optimized. A GC/MS in EI and in methane-CI mode was used for the analysis of these compounds. The new approach was tested on a number of multifunctional compounds. The interpretation of their EI (70 eV) and CI mass spectra shows that critical information is gained leading to unambiguous identification of unknown compounds. For example, when derivatized only with BF(3)-methanol, their mass spectra comprise primary ions at m/z M.+ + 1, M.+ + 29, and M.+ - 31 for compounds bearing only carboxylic groups and M.+ + 1, M.+ + 29, M.+ - 31, and M+. - 17 for those bearing hydroxyl and carboxylic groups. However, when a second derivatization (BSTFA) was used, compounds bearing hydroxyl and carboxylic groups simultaneously show, in addition to the ions observed before, ions at m/z M.+ + 73, M.+ - 15, M.+ - 59, M.+ - 75, M.+ - 89, and 73. To the best of our knowledge, this technique describes systematically for the first time a method for identifying multifunctional oxygenated compounds containing simultaneously one or more hydroxyl and carboxylic acid groups.


Assuntos
Ácidos Carboxílicos/análise , Hidróxidos/análise , Aerossóis , Ésteres , Cromatografia Gasosa-Espectrometria de Massas , Indicadores e Reagentes , Compostos de Trimetilsilil
3.
Environ Sci Technol ; 35(7): 1394-405, 2001 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11348073

RESUMO

A kinetic mechanism was used to link and model the gas-phase reactions and aerosol accumulation resulting from alpha-pinene reactions in the presence of sunlight, ozone (O3), and oxides of nitrogen (NOx). Reaction products and aerosol formation from the kinetic model were compared to outdoor smog chamber experiments conducted under natural sunlight in the presence of NOx and in the dark in the presence of O3. The gas-particle partitioning of semivolatile organics generated in the gas phase was treated as an equilibrium process between particle absorption and desorption. Models vs experimental aerosol yields illustrate that reasonable predictions of secondary aerosol formation are possible from both dark ozone and light NOx/alpha-pinene systems over a variety of different outdoor conditions. On average, measured gas- and particle-phase products accounted for approximately 54-72% of the reacted alpha-pinene carbon. Model predictions suggest that organic nitrates account for another approximately 25% of the reacted carbon, and most of this is in the gas phase. Measured particle-phase products accounted for 60-100% of the particle filter mass, with pinic acid and pinonic acid being the primary aerosol-phase products. In the gas phase, pinonaldehyde and pinonic acid are major products. Model simulations of these and other products show generally reasonable fits to the experimental data from the perspective of timing and concentrations. These results are very encouraging for a compound such as pinonaldehyde, since it is being formed from OH attack on alpha-pinene and is also simultaneously photolyzed and reacted with OH.


Assuntos
Modelos Teóricos , Monoterpenos , Óxido Nítrico/química , Terpenos/química , Aerossóis , Poluentes Atmosféricos , Monoterpenos Bicíclicos , Previsões , Oxidantes Fotoquímicos/química , Ozônio/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...