Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(5): 177, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029289

RESUMO

Nanoparticles (NPs) are becoming more widely produced, used, and released into the aquatic environment. In aquatic ecosystems, these NPs affect different populations of photosynthesizing organisms, such as cyanobacteria. This study aimed to evaluate the effects of titanium dioxide (TiO2) NPs (48 mg l-1) combined with low (0.04 mM) and high (9 mM) concentrations of urea and nitrate on Microcystis aeruginosa. Microcystins (MCs) production and release were monitored in the cyanobacterium. The results showed that high urea concentration (9 mM) combined with TiO2 NPs inhibited growth, pigment, and malondialdehyde (MDA) content by 82%, 63%, and 47%, respectively. The treatment also increased the reactive oxygen species (ROS) and glutathione S-transferase (GST) activity by 40.7% and 67.7%, respectively. Similarly, low nitrate (0.04 mM) combined with TiO2 NPs inhibited growth by 40.3% and GST activity by 36.3% but stimulated pigment production and ROS concentration in M. aeruginosa. These responses suggest that high urea combined with TiO2.NPs and high nitrate combined with TiO2 NPs induced oxidative stress in cyanobacteria. The peroxidase (POD) activity of M. aeruginosa decreased by 17.7% with increasing urea concentrations. Our findings suggest that TiO2 NPs combined with changing nutrient (urea and nitrate) concentrations may adversely affect cyanobacterial development and antioxidant defense enzymes.


Assuntos
Microcystis , Nanopartículas , Antioxidantes/farmacologia , Microcystis/metabolismo , Espécies Reativas de Oxigênio , Biomassa , Ecossistema , Nitrogênio/farmacologia , Nitratos/farmacologia , Estresse Oxidativo , Ureia , Microcistinas/farmacologia
2.
Biotechnol Rep (Amst) ; 30: e00614, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33912404

RESUMO

The aim of this study was to evaluate the removal of Pb (II) and Ni (II) from untreated waste water using sugarcane bagasse and possible desorption of the metal ions from the adsorbent for effective re-use. The effects of pH (4-6), temperature (30-70 °C), contact time (30-150 min) and adsorbent dosage (0.3-0.7 g) were examined. Optimum conditions for the removal efficiencies of Pb (89.31 %) and Ni (96.33 %) were pH, 6.0; temperature, 30 °C; contact time, 90 min. and adsorbent dosage, 0.5 g. The maximum monolayer adsorption capacities of Pb (II) and Ni (II) were 1.61 mg/g and 123.46 mg/g respectively, by fitting the equilibrium data to the Langmuir isotherm model. Freundlich isotherm and pseudo second order kinetic models were best fitted for Pb (II) and Ni (II) uptake. Desorption of the metal ions from the metal-loaded bagasse was best performed by HNO3 with removal efficiency of 85.2 %. Therefore, sugarcane bagasse has a high potential for removal of heavy metals from waste water and can be re-used at any time after desorption without losing its efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...