Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979336

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers and thus identifying more effective therapies is a major unmet need. In this study we characterized the super enhancer (SE) landscape of human PDAC to identify novel, potentially targetable, drivers of the disease. Our analysis revealed that MICAL2 is a super enhancer-associated gene in human PDAC. MICAL2 is a flavin monooxygenase that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin related transcription factors (MRTF-A and MRTF-B). We found that MICAL2 is overexpressed in PDAC and correlates with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and EMT signaling pathways, contributing to tumor growth and metastasis. In loss and gain of function experiments in human and mouse PDAC cells, we observed that MICAL2 promotes both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 expression also inhibited macropinocytosis. Through in vitro phenotypic analyses, we show that MICAL2, MRTF-A and MRTF-B influence PDAC cell proliferation, migration and promote cell cycle progression. Importantly, we demonstrate that MICAL2 is essential for in vivo tumor growth and metastasis. Interestingly, we find that MRTF-B, but not MRTF-A, phenocopies MICAL2-driven phenotypes in vivo . This study highlights the multiple ways in which MICAL2 impacts PDAC biology and suggests that its inhibition may impede PDAC progression. Our results provide a foundation for future investigations into the role of MICAL2 in PDAC and its potential as a target for therapeutic intervention.

2.
Clin Cancer Res ; 27(7): 2100-2110, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33451980

RESUMO

PURPOSE: Pancreatic cancer is an aggressive disease associated with a poor 5-year overall survival. Most patients are ineligible for surgery due to late diagnosis and are treated primarily with chemotherapy with very limited success. Pancreatic cancer is relatively insensitive to chemotherapy due to multiple factors, including reduced bioavailability of drugs to tumor cells. One strategy to improve drug efficacy with reduced toxicity is the development of antibody-drug conjugates (ADC), which have now been used successfully to treat both solid and liquid tumors. Here, we evaluate the efficacy of TR1801-ADC, a newly developed ADC composed of a MET antibody conjugated to the highly potent pyrrolobenzodiazepine toxin-linker, tesirine. EXPERIMENTAL DESIGN: We first evaluated MET expression and subcellular localization in pancreatic cancer cell lines, human tumors, and patient-derived xenografts (PDX). We then tested TR1801-ADC efficacy in vitro in pancreatic cancer cell lines. Preclinical evaluation of TR1801-ADC efficacy was conducted on PDXs selected on the basis of their MET expression level. RESULTS: We show that MET is highly expressed and located at the plasma membrane of pancreatic cancer cells. We found that TR1801-ADC induces a specific cytotoxicity in pancreatic cancer cell lines and a profound tumor growth inhibition, even in a gemcitabine-resistant tumor. We also noted synergism between TR1801-ADC and gemcitabine in vitro and an improved response to the combination in vivo. CONCLUSIONS: Together, these results suggest the promise of agents such as TR1801-ADC as a novel approach to the treatment of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Imunoconjugados/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/imunologia , Animais , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/mortalidade , Proteínas Proto-Oncogênicas c-met/análise , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
3.
Oncogene ; 38(28): 5599-5611, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30967626

RESUMO

The MST1R (RON) kinase is overexpressed in >80% of human pancreatic cancers, but its role in pancreatic carcinogenesis is unknown. In this study, we examined the relevance of Mst1r kinase to Kras driven pancreatic carcinogenesis using genetically engineered mouse models. In the setting of mutant Kras, Mst1r overexpression increased acinar-ductal metaplasia (ADM), accelerated the progression of pancreatic intraepithelial neoplasia (PanIN), and resulted in the accumulation of (mannose receptor C type 1) MRC1+, (arginase 1) Arg+ macrophages in the tumor microenvironment. Conversely, absence of a functional Mst1r kinase slowed PanIN initiation, resulted in smaller tumors, prolonged survival and a reduced tumor-associated macrophage content. Mst1r expression was associated with increased production of its ligand Mst1, and in orthotopic models, suppression of Mst1 expression resulted in reduced tumor size, changes in macrophage polarization and enhanced T cell infiltration. This study demonstrates the functional significance of Mst1r during pancreatic cancer initiation and progression. Further, it provides proof of concept that targeting Mst1r can modulate pancreatic cancer growth and the microenvironment. This study provides further rationale for targeting Mst1r as a therapeutic strategy.


Assuntos
Carcinoma Ductal Pancreático/patologia , Células Epiteliais/patologia , Macrófagos/patologia , Neoplasias Pancreáticas/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Carcinoma Ductal Pancreático/enzimologia , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Pancreáticas/enzimologia , Estudo de Prova de Conceito , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Microambiente Tumoral
4.
PLoS One ; 12(12): e0189051, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211796

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extremely dense fibrotic stroma, which contributes to tumor growth, metastasis, and drug resistance. During tumorigenesis, quiescent pancreatic stellate cells (PSCs) are activated and become major contributors to fibrosis, by increasing growth factor signaling and extracellular matrix deposition. The p53 tumor suppressor is known to restrict tumor initiation and progression through cell autonomous mechanisms including apoptosis, cell cycle arrest, and senescence. There is growing evidence that stromal p53 also exerts anti-tumor activity by paracrine mechanisms, though a role for stromal p53 in PDAC has not yet been described. Here, we demonstrate that activation of stromal p53 exerts anti-tumor effects in PDAC. We show that primary cancer-associated PSCs (caPSCs) isolated from human PDAC express wild-type p53, which can be activated by the Mdm2 antagonist Nutlin-3a. Our work reveals that p53 acts as a major regulator of PSC activation and as a modulator of PDAC fibrosis. In vitro, p53 activation by Nutlin-3a induces profound transcriptional changes, which reprogram activated PSCs to quiescence. Using immunofluorescence and lipidomics, we have also found that p53 activation induces lipid droplet accumulation in both normal and tumor-associated fibroblasts, revealing a previously undescribed role for p53 in lipid storage. In vivo, treatment of tumor-bearing mice with the clinical form of Nutlin-3a induces stromal p53 activation, reverses caPSCs activation, and decreases fibrosis. All together our work uncovers new functions for stromal p53 in PDAC.


Assuntos
Carcinoma Ductal Pancreático/terapia , Reprogramação Celular , Genes p53 , Neoplasias Pancreáticas/terapia , Células Estreladas do Pâncreas/metabolismo , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Ésteres do Colesterol/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transcrição Gênica , Triglicerídeos/metabolismo , Células Tumorais Cultivadas
5.
Nature ; 534(7607): 407-411, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27281208

RESUMO

Pancreatic intraepithelial neoplasia is a pre-malignant lesion that can progress to pancreatic ductal adenocarcinoma, a highly lethal malignancy marked by its late stage at clinical presentation and profound drug resistance. The genomic alterations that commonly occur in pancreatic cancer include activation of KRAS2 and inactivation of p53 and SMAD4 (refs 2-4). So far, however, it has been challenging to target these pathways therapeutically; thus the search for other key mediators of pancreatic cancer growth remains an important endeavour. Here we show that the stem cell determinant Musashi (Msi) is a critical element of pancreatic cancer progression both in genetic models and in patient-derived xenografts. Specifically, we developed Msi reporter mice that allowed image-based tracking of stem cell signals within cancers, revealing that Msi expression rises as pancreatic intraepithelial neoplasia progresses to adenocarcinoma, and that Msi-expressing cells are key drivers of pancreatic cancer: they preferentially harbour the capacity to propagate adenocarcinoma, are enriched in circulating tumour cells, and are markedly drug resistant. This population could be effectively targeted by deletion of either Msi1 or Msi2, which led to a striking defect in the progression of pancreatic intraepithelial neoplasia to adenocarcinoma and an improvement in overall survival. Msi inhibition also blocked the growth of primary patient-derived tumours, suggesting that this signal is required for human disease. To define the translational potential of this work we developed antisense oligonucleotides against Msi; these showed reliable tumour penetration, uptake and target inhibition, and effectively blocked pancreatic cancer growth. Collectively, these studies highlight Msi reporters as a unique tool to identify therapy resistance, and define Msi signalling as a central regulator of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imagem Molecular , Proteínas do Tecido Nervoso/genética , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas de Ligação a RNA/genética , Animais , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Deleção de Genes , Genes Reporter/genética , Humanos , Masculino , Camundongos , Modelos Genéticos , Células Neoplásicas Circulantes/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/uso terapêutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncotarget ; 7(29): 45959-45975, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27323855

RESUMO

The RON tyrosine kinase receptor is under investigation as a novel target in pancreatic cancer. While RON mutations are uncommon, RON isoforms are produced in cancer cells via a variety of mechanisms. In this study we sought to: 1) characterize RON isoform expression in pancreatic cancer, 2) investigate mechanisms that regulate isoform expression, and 3) determine how various isoforms effect gene expression, oncogenic phenotypes and responses to RON directed therapies. We quantified RON transcripts in human pancreatic cancer and found expression levels 2500 fold that of normal pancreas with RON isoform expression comprising nearly 50% of total transcript. RNA seq studies revealed that the short form (sfRON) and P5P6 isoforms which have ligand independent activity, induce markedly different patterns of gene expression than wild type RON. We found that transcription of RON isoforms is regulated by promoter hypermethylation as the DNA demethylating agent 5-aza-2'-deoxycytidine decreased all RON transcripts in a subset of pancreatic cancer cell lines. The viability of sfRON-expressing HPDE cells was reduced by a RON specific small molecule inhibitor, while a therapeutic monoclonal antibody had no demonstrable effects. In summary, RON isoforms may comprise half of total RON transcript in human pancreatic cancer and their expression is regulated at least in part by promoter hypermethylation. RON isoforms activate distinct patterns of gene expression, have transforming activity and differential responses to RON directed therapies. These findings further our understanding of RON biology in pancreatic cancer and have implications for therapeutic strategies to target RON activity.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pancreáticas/enzimologia , Receptores Proteína Tirosina Quinases/biossíntese , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Metilação de DNA/genética , Xenoenxertos , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptores Proteína Tirosina Quinases/genética , Células Tumorais Cultivadas
7.
Mol Neurobiol ; 53(3): 1461-1477, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25636685

RESUMO

The energy-yielding pathways that provide the large amounts of metabolic energy required by inner ear sensorineural cells are poorly understood. Neuroglobin (Ngb) is a neuron-specific hemoprotein of the globin family, which is suggested to be involved in oxidative energy metabolism. Here, we present quantitative real-time reverse transcription PCR, in situ hybridization, immunohistochemical, and Western blot evidence that neuroglobin is highly expressed in the mouse and rat cochlea. For primary cochlea neurons, Ngb expression is limited to the subpopulation of type I spiral ganglion cells, those which innervate inner hair cells, while the subpopulation of type II spiral ganglion cells which innervate the outer hair cells do not express Ngb. We further investigated Ngb distribution in rat, mouse, and human auditory brainstem centers, and found that the cochlear nuclei and superior olivary complex (SOC) also express considerable amounts of Ngb. Notably, the majority of olivocochlear neurons, those which provide efferent innervation of outer hair cells as identified by neuronal tract tracing, were Ngb-immunoreactive. We also observed that neuroglobin in the SOC frequently co-localized with neuronal nitric oxide synthase, the enzyme responsible for nitric oxide production. Our findings suggest that neuroglobin is well positioned to play an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system, and provides the first evidence that Ngb signal differentiates the central projections of the inner and outer hair cells.


Assuntos
Tronco Encefálico/metabolismo , Cóclea/metabolismo , Globinas/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Trifosfato de Adenosina/metabolismo , Idoso , Animais , Feminino , Globinas/genética , Globinas/fisiologia , Humanos , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neuroglobina , Óxido Nítrico Sintase Tipo I/análise , Ratos , Ratos Sprague-Dawley , Gânglio Espiral da Cóclea/metabolismo , Complexo Olivar Superior/metabolismo
8.
J Transl Med ; 12: 41, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24507750

RESUMO

BACKGROUND: Gastrointestinal stromal tumor (GIST) is the most common sarcoma and its treatment with imatinib has served as the paradigm for developing targeted anti-cancer therapies. Despite this success, imatinib-resistance has emerged as a major problem and therefore, the clinical efficacy of other drugs has been investigated. Unfortunately, most clinical trials have failed to identify efficacious drugs despite promising in vitro data and pathological responses in subcutaneous xenografts. We hypothesized that it was feasible to develop orthotopic patient-derived xenografts (PDXs) from resected GIST that could recapitulate the genetic heterogeneity and biology of the human disease. METHODS: Fresh tumor tissue from three patients with pathologically confirmed GISTs was obtained immediately following tumor resection. Tumor fragments (4.2-mm3) were surgically xenografted into the liver, gastric wall, renal capsule, and pancreas of immunodeficient mice. Tumor growth was serially assessed with ultrasonography (US) every 3-4 weeks. Tumors were also evaluated with positron emission tomography (PET). Animals were sacrificed when they became moribund or their tumors reached a threshold size of 2500-mm3. Tumors were subsequently passaged, as well as immunohistochemically and histologically analyzed. RESULTS: Herein, we describe the first model for generating orthotopic GIST PDXs. We have successfully xenografted three unique KIT-mutated tumors into a total of 25 mice with an overall success rate of 84% (21/25). We serially followed tumor growth with US to describe the natural history of PDX growth. Successful PDXs resulted in 12 primary xenografts in NOD-scid gamma or NOD-scid mice while subsequent successful passages resulted in 9 tumors. At a median of 7.9 weeks (range 2.9-33.1 weeks), tumor size averaged 473 ± 695-mm³ (median 199-mm3, range 12.6-2682.5-mm³) by US. Furthermore, tumor size on US within 14 days of death correlated with gross tumor size on necropsy. We also demonstrated that these tumors are FDG-avid on PET imaging, while immunohistochemically and histologically the PDXs resembled the primary tumors. CONCLUSIONS: We report the first orthotopic model of human GIST using patient-derived tumor tissue. This novel, reproducible in vivo model of human GIST may enhance the study of GIST biology, biomarkers, personalized cancer treatments, and provide a preclinical platform to evaluate new therapeutic agents for GIST.


Assuntos
Tumores do Estroma Gastrointestinal/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Idoso , Animais , Demografia , Progressão da Doença , Feminino , Fluordesoxiglucose F18 , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Ultrassonografia
9.
Int J Cancer ; 131(8): 1744-54, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22275185

RESUMO

The recepteur d'origine nantais (RON) receptor tyrosine kinase is overexpressed and stimulates invasive growth in pancreatic cancer cells, yet the mechanisms that underlie RON-mediated phenotypes remain poorly characterized. To better understand RON function in pancreatic cancer cells, we sought to identify novel RON interactants using multidimensional protein identification analysis. These studies revealed plectin, a large protein of the spectrin superfamily, to be a novel RON interactant. Plectin is a multifunctional protein that complexes with integrin-ß4 (ITGB4) to form hemidesmosomes, serves as a scaffolding platform crucial to the function of numerous protein signaling pathways and was recently described as an overexpressed protein in pancreatic cancer (Bausch D et al., Clin Cancer Res 2010; Kelly et al., PLoS Med 2008;5:e85). In this study, we demonstrate that on exposure to its ligand, macrophage-stimulating protein, RON binds to plectin and ITGB4, which results in disruption of the plectin-ITGB4 interaction and enhanced cell migration, a phenotype that can be recapitulated by small hairpin ribosomal nucleic acid (shRNA)-mediated suppression of plectin expression. We demonstrate that disruption of plectin-ITGB4 is dependent on RON and phosphoinositide-3 (PI3) kinase, but not mitogen-activated protein kinase (MEK), activity. Thus, in pancreatic cancer cells, plectin and ITGB4 form hemidesmosomes which serve to anchor cells to the extracellular matrix (ECM) and restrain migration. The current study defines a novel interaction between RON and plectin, provides new insight into RON-mediated migration and further supports efforts to target RON kinase activity in pancreatic cancer.


Assuntos
Movimento Celular , Hemidesmossomos/metabolismo , Integrina beta4/metabolismo , Neoplasias Pancreáticas/patologia , Plectina/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Cromatografia Líquida , Imunofluorescência , Humanos , Rim/citologia , Rim/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Neoplasias Pancreáticas/metabolismo , Fosforilação , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Cicatrização
10.
Carcinogenesis ; 32(8): 1151-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21565828

RESUMO

The RON receptor tyrosine kinase (RTK) is overexpressed in the majority of pancreatic cancers, yet its role in pancreatic cancer cell biology remains to be clarified. Recent work in childhood sarcoma identified RON as a mediator of resistance to insulin-like growth factor receptor (IGF1-R)-directed therapy. To better understand RON function in pancreatic cancer cells, we sought to identify novel RON interactants. Using multidimensional protein identification analysis, IGF-1R was identified and confirmed to interact with RON in pancreatic cancer cell lines. IGF-1 induces rapid phosphorylation of RON, but RON signaling did not activate IGF-1R indicating unidirectional signaling between these RTKs. We next demonstrate that IGF-1 induces pancreatic cancer cell migration that is RON dependent, as inhibition of RON signaling by either shRNA-mediated RON knockdown or by a RON kinase inhibitor abrogated IGF-1 induced wound closure in a scratch assay. In pancreatic cancer cells, unlike childhood sarcoma, STAT-3, rather than RPS6, is activated in response to IGF-1, in a RON-dependent manner. The current study defines a novel interaction between RON and IGF-1R and taken together, these two studies demonstrate that RON is an important mediator of IGF1-R signaling and that this finding is consistent in both human epithelial and mesenchymal cancers. These findings demand additional investigation to determine if IGF-1R independent RON activation is associated with resistance to IGF-1R-directed therapies in vivo and to identify suitable biomarkers of activated RON signaling.


Assuntos
Movimento Celular/fisiologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Western Blotting , Adesão Celular , Humanos , Imunoprecipitação , Neoplasias Pancreáticas/genética , RNA Interferente Pequeno/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Células Tumorais Cultivadas , Cicatrização
11.
Pancreas ; 39(3): 301-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20358644

RESUMO

OBJECTIVES: The RON receptor mediates tumorigenic phenotypes in pancreatic cancer (PC), but no investigations currently have implicated RON signaling as a regulator of angiogenesis in PC. Angiogenesis is vital to oncogenesis, and vascular endothelial growth factor (VEGF) is the most well-characterized angiogenic protein. This study sought to determine the effect of RON stimulation on in vitro angiogenesis and VEGF production in PC cell lines. METHODS: Vascular endothelial growth factor levels from conditioned media of hepatocyte growth factor-like protein-stimulated BxPC-3 and FG cells were quantitated via enzyme-linked immunosorbent assay and likewise interrogated in the presence and absence of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase/AKT inhibitors. To determine in vitro angiogenesis, human microvascular endothelial cells were subsequently exposed to the same conditioned media to assay for microtubule formation. RESULTS: RON signaling resulted in a 52% and 34% increase in VEGF levels in BxPC-3 and FG cells, respectively. Vascular endothelial growth factor secretion was inhibited with MAPK or phosphatidylinositol-3-kinase blockade in BxPC-3 cells, but only MAPK inhibition resulted in decreased VEGF production in FG cells. BxPC-3 conditioned media induced tubule formation in human microvascular endothelial cells, which was abrogated by RON inhibition. CONCLUSIONS: RON signaling results in MAPK-mediated VEGF secretion by PC cells and promotion of microtubule formation. These findings suggest another mechanism by which RON signaling may promote PC progression.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
12.
Cancer Res ; 70(3): 1130-40, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20103639

RESUMO

The RON receptor tyrosine kinase is overexpressed in premalignant pancreatic intraepithelial neoplasia (PanIN) and in the majority of pancreatic cancers. In pancreatic cells, RON is an important K-Ras effector and RON ligand can enhance migration/invasion and apoptotic resistance. However, the pathobiological significance of RON overexpression in pancreatic cancers has yet to be fully established. In this study, we demonstrate that RON signaling mediates a unique transcriptional program that is conserved between cultured cells derived from murine PanIN or human pancreatic cancer cells grown as subcutaneous tumor xenografts. In both systems, RON signaling regulates expression of genes implicated in cancer-cell survival, including Bcl-2 and the transcription factors signal transducer and activator of transcription 3 (STAT 3) and c-Jun. shRNA-mediated silencing of RON in pancreatic cancer xenografts inhibited their growth, primarily by increasing susceptibility to apoptosis and by sensitizing them to gemcitabine treatment. Escape from RON silencing was associated with re-expression of RON and/or expression of phosphorylated forms of the related c-Met or epidermal growth factor receptors. These findings indicate that RON signaling mediates cell survival and in vivo resistance to gemcitabine in pancreatic cancer, and they reveal mechanisms through which pancreatic cancer cells may circumvent RON-directed therapies.


Assuntos
Apoptose/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Desoxicitidina/farmacologia , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Camundongos , Camundongos Nus , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Interferência de RNA , Receptores Proteína Tirosina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
13.
Virol J ; 4: 26, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17349048

RESUMO

BACKGROUND: Congenital cytomegalovirus (CMV) infection is the most common congenital viral infection in humans and the major nonhereditary cause of central nervous system (CNS) developmental disorders. Previous attempts to develop a murine CMV (MCMV) model of natural congenital human CMV (HCMV) infection have failed because MCMV does not cross the placenta in immunocompetent mice. RESULTS: In marked contrast with immunocompetent mice, C.B-17 SCID (severe combined immunodeficient) mice were found to be highly susceptible to natural MCMV transplacental transmission and congenital infection. Timed-pregnant SCID mice were intraperitoneally (IP) injected with MCMV at embryonic (E) stages E0-E7, and vertical MCMV transmission was evaluated using nested polymerase chain reaction (nPCR), in situ hybridization (ISH) and immunohistochemical (IHC) assays. SCID mouse dams IP injected at E0 with 102 PFU of MCMV died or resorbed their fetuses by E18. Viable fetuses collected at E18 from SCID mice IP injected with 102-104 PFU of MCMV at E7 did not demonstrate vertical MCMV transmission. Notably, transplacental MCMV transmission was confirmed in E18 fetuses from SCID mice IP injected with 103 PFU of MCMV at stages E3-E5. The maximum rate of transplacental MCMV transmission (53%) at E18 occurred when SCID mouse dams were IP injected with 103 PFU of MCMV at E4. Congenital infection was confirmed by IHC immunostaining of MCMV antigens in 26% of the MCMV nPCR positive E18 fetuses. Transplacental MCMV transmission was associated with intrauterine growth retardation and microcephaly. Additionally, E18 fetuses with MCMV nPCR positive brains had cerebral interleukin-1alpha (IL-1alpha) expression significantly upregulated and cerebral IL-1 receptor II (IL-1RII) transcription significantly downregulated. However, MCMV-induced changes in cerebral cytokine expression were not associated with any histological signs of MCMV infection or inflammation in the brain. CONCLUSION: Severe T- and B-cell immunodeficiencies in SCID mice significantly enhance the rate of natural MCMV transplacental transmission and congenital infection. During gestation MCMV exhibits a tissue tropism for the developing brain, and vertical MCMV transmission is correlated with fetal growth retardation and abnormal cerebral proinflammatory cytokine expression. These data confirm that natural vertical MCMV infection in SCID mice constitutes a useful new experimental rodent model of congenital HCMV infection.


Assuntos
Encéfalo/virologia , Viroses do Sistema Nervoso Central/congênito , Infecções por Citomegalovirus/congênito , Modelos Animais de Doenças , Camundongos SCID , Muromegalovirus/patogenicidade , Placenta/virologia , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Viroses do Sistema Nervoso Central/fisiopatologia , Viroses do Sistema Nervoso Central/transmissão , Viroses do Sistema Nervoso Central/virologia , Infecções por Citomegalovirus/fisiopatologia , Infecções por Citomegalovirus/transmissão , Infecções por Citomegalovirus/virologia , Feminino , Doenças Fetais/virologia , Humanos , Transmissão Vertical de Doenças Infecciosas , Masculino , Camundongos , Muromegalovirus/fisiologia , Gravidez , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...