Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920608

RESUMO

Agricultural products are vitally important for sustaining life on earth and their production has notably grown over the years worldwide in general and in Brazil particularly. Elevating agricultural practices consequently leads to a proportionate increase in the usage of pesticides that are crucially important for enhanced crop yield and protection. These compounds have been employed excessively in alarming concentrations, causing the contamination of soil, water, and air. Additionally, they pose serious threats to human health. The current study introduces an innovative tool for producing appropriate materials coupled with an electrochemical sensor designed to measure carbendazim levels. The sensor is developed using a molecularly imprinted polymer (MIP) mounted on a glassy carbon electrode. This electrode is equipped with multi-walled carbon nanotubes (MWCNTs) for improved performance. The combined system demonstrates promising potential for accurately quantifying carbendazim. The morphological characteristics of the synthesized materials were investigated using field emission scanning electron microscopy (FESEM) and the Fourier-transform infrared (FTIR) technique. The analytical curve was drawn using the electrochemical method in the range of 2 to 20 ppm while for HPLC 2-12 ppm; the results are presented as the maximum adsorption capacity of the MIP (82.4%) when compared with NIP (41%) using the HPLC method. The analysis conducted using differential pulse voltammetry (DPV) yielded a limit of detection (LOD) of 1.0 ppm and a repeatability of 5.08% (n = 10). The results obtained from the analysis of selectivity demonstrated that the proposed electrochemical sensor is remarkably efficient for the quantitative assessment of carbendazim, even in the presence of another interferent. The sensor was successfully tested for river water samples for carbendazim detection, and recovery rates ranging from 94 to 101% were obtained for HPLC and 94 to 104% for the electrochemical method. The results obtained show that the proposed electrochemical technique is viable for the application and quantitative determination of carbendazim in any medium.


Assuntos
Benzimidazóis , Carbamatos , Técnicas Eletroquímicas , Nanotubos de Carbono , Praguicidas , Carbamatos/análise , Benzimidazóis/análise , Praguicidas/análise , Nanotubos de Carbono/química , Técnicas Biossensoriais , Eletrodos , Materiais Biomiméticos/química , Limite de Detecção
2.
Polymers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337251

RESUMO

Curcumin is a compound of great importance in the food industry due to its biological and pharmacological properties, which include being an antioxidant, anti-inflammatory, antibacterial, antiviral, and anticarcinogenic. This paper proposes the synthesis of an electrochemical sensor based on molecularly imprinted polymers (MIPs) and MWCNT by drop casting deposited on a glassy carbon electrode (GCE) for the selective quantification of curcumin in food samples. The synthesized compounds are characterized by Fourier transform infrared (IR), Brunauer-Emmett-Teller (BET), and electrochemical techniques such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The optimal conditions for further experiments were determined by selecting these parameters. We examined three food products, commercial capsules, turmeric rhizomes, and commercial turmeric powder, employing both electrochemical and HPLC methods for the analysis. The electrochemical method revealed a limit of detection (LOD) value of 0.1365 µmol L-1, compared with the HPLC analysis, which gave a value of 3.55 µmol L-1. Furthermore, the MIP material demonstrated superior selectivity for the analyte compared to potential interferents. The recovery percentage, determined using the HPLC method, fell within the range of 87.5% to 102.6.

3.
Biomimetics (Basel) ; 8(1)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36810408

RESUMO

This study investigates biomimetic sensors for the detection of methotrexate contaminants in environmental samples. Sensors inspired by biological systems are the focus of this biomimetic strategy. Methotrexate is an antimetabolite that is widely used for the treatment of cancer and autoimmune diseases. Due to the widespread use of methotrexate and its rampant disposal into the environment, the residues of this drug are regarded as an emerging contaminant of huge concern, considering that exposure to the contaminant has been found to lead to the inhibition of some essential metabolic processes, posing serious risks to humans and other living beings. In this context, this work aims to quantify methotrexate through the application of a highly efficient biomimetic electrochemical sensor constructed using polypyrrole-based molecularly imprinted polymer (MIP) electrodeposited by cyclic voltammetry on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNT). The electrodeposited polymeric films were characterized by infrared spectrometry (FTIR), scanning electron microscopy (SEM), and cyclic voltammetry (CV). The analyses conducted using differential pulse voltammetry (DPV) yielded a detection limit of 2.7 × 10-9 mol L-1 for methotrexate, a linear range of 0.01-125 µmol L-1, and a sensitivity of 0.152 µA L mol-1. The results obtained from the analysis of the selectivity of the proposed sensor through the incorporation of interferents in the standard solution pointed to an electrochemical signal decay of only 15.4%. The findings of this study show that the proposed sensor is highly promising and suitable for use in the quantification of methotrexate in environmental samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...