Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 249: 115937, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211465

RESUMO

Helicobacter pylori (H. pylori) is classified as a class I carcinogen that colonizes the human gastrointestinal (GI) tract. The detection at low concentrations is crucial in combatting H. pylori. HopQ protein is located on H. pylori's outer membrane and is expressed at an early stage of contamination, which signifies it as an ideal biomarker. In this study, we presented the development of an electrochemical impedimetric immunosensor for the ultra-sensitive detection of HopQ at low concentrations. The sensor employed polypyrrole nanotubes (PPy-NTs) and carboxylated multi-walled carbon nanotubes (MWCNT-COOH) nanocomposite. PPy-NTs were chosen for their excellent conductivity, biocompatibility, and redox capabilities, simplifying sample preparation by eliminating the need to add redox probes upon measurement. MWCNT-COOH provided covalent binding sites for HopQ antibodies (HopQ-Ab) on the biosensor surface. Characterization of the biosensor was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and electrochemical impedance spectroscopy (EIS), complemented by numerical semiempirical quantum calculations. The results demonstrated a dynamic linear range of 5 pg/mL to 1.063 ng/mL and an excellent selectivity, with the possibility of excluding interference using EIS data, specifically charge transfer resistance and double-layer capacitance as multivariants for the calibration curve. Using two EIS components, the limit of detection is calculated to be 2.06 pg/mL. The biosensor was tested with a spiked drinking water sample and showed a signal recovery of 105.5% when detecting 300 pg/mL of HopQ. This novel H. pylori biosensor offers reliable, simple, portable, and rapid screening of the bacteria.


Assuntos
Técnicas Biossensoriais , Helicobacter pylori , Nanocompostos , Nanotubos de Carbono , Humanos , Polímeros/química , Nanotubos de Carbono/química , Pirróis/química , Proteínas de Membrana , Técnicas Biossensoriais/métodos , Imunoensaio , Biomarcadores , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
2.
Materials (Basel) ; 16(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959478

RESUMO

This review article dives into the complex world of biocompatibility testing: chemical, mechanical, and biological characterization, including many elements of biocompatibility, such as definitions, descriptive examples, and the practical settings. The focus extends to evaluating standard documents obtained from reliable organizations; with a particular focus on open-source information, including FDA-USA, ISO 10933 series, and TÜV SÜD. We found a significant gap in this field: biomaterial scientists and those involved in the realm of medical device development in general, and implants in particular, lack access to a tool that reorganizes the process of selecting the appropriate biocompatibility test for the implant being examined. This work progressed through two key phases that aimed to provide a solution to this gap. A straightforward "yes or no" flowchart was initially developed to guide biocompatibility testing decisions based on the previously accumulated information. Subsequently, the Python code was employed, generating a framework through targeted questions. This work reshapes biocompatibility evaluation, bridging theory and practical implementation. An integrated approach via a flowchart and the Python code empowers stakeholders to navigate biocompatibility testing effortlessly. To conclude, researchers are now better equipped for a safer, more effective implant development, propelling the field towards improved patient care and innovative progress.

3.
Biosensors (Basel) ; 13(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37232889

RESUMO

Helicobacter pylori (H. pylori) is a highly contagious pathogenic bacterium that can cause gastrointestinal ulcers and may gradually lead to gastric cancer. H. pylori expresses the outer membrane HopQ protein at the earliest stages of infection. Therefore, HopQ is a highly reliable candidate as a biomarker for H. pylori detection in saliva samples. In this work, an H. pylori immunosensor is based on detecting HopQ as an H. pylori biomarker in saliva. The immunosensor was developed by surface modification of screen-printed carbon electrodes (SPCE) with MWCNT-COOH decorated with gold nanoparticles (AuNP) followed by HopQ capture antibody grafting on SPCE/MWCNT/AuNP surface using EDC/S-NHS chemistry. The sensor performance was investigated utilizing various methods, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX). H. pylori detection performance in spiked saliva samples was evaluated by square wave voltammetry (SWV). The sensor is suitable for HopQ detection with excellent sensitivity and linearity in the 10 pg/mL-100 ng/mL range, with a 2.0 pg/mL limit of detection (LOD) and an 8.6 pg/mL limit of quantification (LOQ). The sensor was tested in saliva at 10 ng/mL, and recovery of 107.6% was obtained by SWV. From Hill's model, the dissociation constant Kd for HopQ/HopQ antibody interaction is estimated to be 4.60 × 10-10 mg/mL. The fabricated platform shows high selectivity, good stability, reproducibility, and cost-effectiveness for H. pylori early detection due to the proper choice of biomarker, the nanocomposite material utilization to boost the SPCE electrical performance, and the intrinsic selectivity of the antibody-antigen approach. Additionally, we provide insight into possible future aspects that researchers are recommended to focus on.


Assuntos
Técnicas Biossensoriais , Helicobacter pylori , Nanopartículas Metálicas , Ouro , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Imunoensaio , Biomarcadores , Limite de Detecção , Técnicas Eletroquímicas/métodos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...