Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 1(7): 552-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21378936

RESUMO

The widespread use of low-temperature polymer electrolyte membrane fuel cells for mobile applications will require significant reductions in the amount of expensive Pt contained within their cathodes, which drive the oxygen reduction reaction (ORR). Although progress has been made in this respect, further reductions through the development of more active and stable electrocatalysts are still necessary. Here we describe a new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y. They were identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt. Electrochemical measurements show that the activity of polycrystalline Pt(3)Sc and Pt(3)Y electrodes is enhanced relative to pure Pt by a factor of 1.5-1.8 and 6-10, respectively, in the range 0.9-0.87 V.


Assuntos
Ligas/química , Oxigênio/química , Elementos de Transição/química , Catálise , Simulação por Computador , Eletroquímica , Oxirredução , Teoria Quântica
2.
Phys Rev Lett ; 99(12): 126101, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17930522

RESUMO

Cyclic voltammetry is a fundamental experimental method for characterizing electrochemical surfaces. Despite its wide use, a way to quantitatively and directly relate cyclic voltammetry to ab initio calculations has been lacking. We derive the cyclic voltammogram for H on Pt(111) and Pt(100), based solely on density functional theory calculations and standard molecular tables. By relating the gas phase adsorption energy to the electrochemical electrode potential, we provide a direct link between surface science and electrochemistry.

3.
J Comb Chem ; 4(6): 563-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12425600

RESUMO

Automated systems for electrochemical synthesis and high-throughput screening of photoelectrochemical materials were developed and used to prepare tungsten-based mixed-metal oxides, W(n)O(m)M(x) [M = Ni, Co, Cu, Zn, Pt, Ru, Rh, Pd, and Ag], specifically for hydrogen production by photoelectrolysis of water. Two-dimensional arrays (libraries) of diverse metal oxides were synthesized by automated cathodic electrodeposition of the oxides on Ti foil substrates. Electrolytes for the mixed oxides were prepared from various metal salts added to a solution containing tungsten stabilized as a peroxo complex. Electrodeposition of the peroxo-stabilized cations gave rise to three distinguishable oxide groups: (1) mixed-metal oxides [Ni], (2) metal-doped tungsten oxides [Pt, Ru, Rh, Pd, Ag], and (3) metal-metal oxide composites [Co, Cu, Zn]. The oxides typically showed n-type semiconducting behavior. Automated measurement of photocurrent using a scanning photoelectrochemical cell showed the W-Ni mixed oxide had the largest relative zero bias photocurrent, particularly at a low Ni concentration (5-10 atomic percent Ni). Pt and Ru were also found to increase the photoactivity of bulk tungsten oxide at relatively low concentrations; however, at concentrations above 5 atomic percent, crystallization of WO(3) was inhibited and photoactivity was diminished. Addition of Co, Cu, and Zn to WO(3) was not found to improve the photoelectrochemical activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...