Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 134(1): 81-96, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38037825

RESUMO

BACKGROUND: Elevated plasma ceramides and microvascular dysfunction both independently predict adverse cardiac events. Despite the known detrimental effects of ceramide on the microvasculature, evidence suggests that activation of the shear-sensitive, ceramide-forming enzyme NSmase (neutral sphingomyelinase) elicits formation of vasoprotective nitric oxide (NO). Here, we explore a novel hypothesis that acute ceramide formation through NSmase is necessary for maintaining NO signaling within the human microvascular endothelium. We further define the mechanism through which ceramide exerts beneficial effects and discern key mechanistic differences between arterioles from otherwise healthy adults (non-coronary artery disease [CAD]) and patients diagnosed with CAD. METHODS: Human arterioles were dissected from discarded surgical adipose tissue (n=166), and vascular reactivity to flow and C2-ceramide was assessed. Shear-induced NO and mitochondrial hydrogen peroxide (H2O2) production were measured in arterioles using fluorescence microscopy. H2O2 fluorescence was assessed in isolated human umbilical vein endothelial cells. RESULTS: Inhibition of NSmase in arterioles from otherwise healthy adults induced a switch from NO to NOX-2 (NADPH-oxidase 2)-dependent H2O2-mediated flow-induced dilation. Endothelial dysfunction was prevented by treatment with sphingosine-1-phosphate (S1P) and partially prevented by C2-ceramide and an agonist of S1P-receptor 1 (S1PR1); the inhibition of the S1P/S1PR1 signaling axis induced endothelial dysfunction via NOX-2. Ceramide increased NO production in arterioles from non-CAD adults, an effect that was diminished with inhibition of S1P/S1PR1/S1P-receptor 3 signaling. In arterioles from patients with CAD, inhibition of NSmase impaired the overall ability to induce mitochondrial H2O2 production and subsequently dilate to flow, an effect not restored with exogenous S1P. Acute ceramide administration to arterioles from patients with CAD promoted H2O2 as opposed to NO production, an effect dependent on S1P-receptor 3 signaling. CONCLUSION: These data suggest that despite differential downstream signaling between health and disease, NSmase-mediated ceramide formation is necessary for proper functioning of the human microvascular endothelium. Therapeutic strategies that aim to significantly lower ceramide formation may prove detrimental to the microvasculature.


Assuntos
Doença da Artéria Coronariana , Doenças Vasculares , Adulto , Humanos , Ceramidas , Peróxido de Hidrogênio , Células Endoteliais da Veia Umbilical Humana , Endotélio
2.
bioRxiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333082

RESUMO

Background: Elevated plasma ceramides independently predict adverse cardiac events and we have previously shown that exposure to exogenous ceramide induces microvascular endothelial dysfunction in arterioles from otherwise healthy adults (0-1 risk factors for heart disease). However, evidence also suggests that activation of the shear-sensitive, ceramide forming enzyme neutral sphingomyelinase (NSmase) enhances vasoprotective nitric oxide (NO) production. Here we explore a novel hypothesis that acute ceramide formation through NSmase is necessary for maintaining NO signaling within the human microvascular endothelium. We further define the mechanism through which ceramide exerts beneficial effects and discern key mechanistic differences between arterioles from otherwise healthy adults and patients with coronary artery disease (CAD). Methods: Human arterioles were dissected from otherwise discarded surgical adipose tissue (n=123), and vascular reactivity to flow and C2-ceramide was assessed. Shear-induced NO production was measured in arterioles using fluorescence microscopy. Hydrogen peroxide (H2O2) fluorescence was assessed in isolated human umbilical vein endothelial cells. Results: Inhibition of NSmase in arterioles from otherwise healthy adults induced a switch from NO to H2O2-mediated flow-induced dilation within 30 minutes. In endothelial cells, NSmase inhibition acutely increased H2O2 production. Endothelial dysfunction in both models was prevented by treatment with C2-ceramide, S1P, and an agonist of S1P-receptor 1 (S1PR1), while the inhibition of S1P/S1PR1 signaling axis induced endothelial dysfunction. Ceramide increased NO production in arterioles from healthy adults, an effect that was diminished with inhibition of S1P/S1PR1/S1PR3 signaling. In arterioles from patients with CAD, inhibition of NSmase impaired dilation to flow. This effect was not restored with exogenous S1P. Although, inhibition of S1P/S1PR3 signaling impaired normal dilation to flow. Acute ceramide administration to arterioles from patients with CAD also promoted H2O2 as opposed to NO production, an effect dependent on S1PR3 signaling. Conclusion: These data suggest that despite key differences in downstream signaling between health and disease, acute NSmase-mediated ceramide formation and its subsequent conversion to S1P is necessary for proper functioning of the human microvascular endothelium. As such, therapeutic strategies that aim to significantly lower ceramide formation may prove detrimental to the microvasculature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...