Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Atten Percept Psychophys ; 82(2): 585-592, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31820280

RESUMO

Some types of object features, such as color, shape, or location, can be processed separately within the visual system, requiring that they be correctly "bound" to a single object via attentional selection of a subset of visual information. Forcing selection to spread too widely can cause an illusion where these features misbind to objects, creating illusory objects that were never present. Here, we present a novel display that produces a robust color-location misbinding illusion that we call foveal gravity (viewable at https://osf.io/2bndg/). When observers selected only a set of colored objects, colors were largely perceived in their correct locations. When observers additionally selected objects in the far periphery, colors in the near periphery migrated closer to the fovea on over 35% of trials. We speculate that foveal gravity occurs because locations closer to the fovea are more likely to defeat more peripheral locations in competitive interactions to "win" the task-relevant color.


Assuntos
Percepção de Cores/fisiologia , Fóvea Central/fisiologia , Ilusões Ópticas/fisiologia , Estimulação Luminosa/métodos , Adolescente , Adulto , Atenção/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
2.
J Exp Psychol Hum Percept Perform ; 42(5): 617-30, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26689307

RESUMO

Representing temporally continuous objects across change (e.g., in position) requires integration of newly sampled visual information with existing object representations. We asked what consequences representational updating has for visual search. In this dynamic visual search task, bars rotated around their central axis. Observers searched for a single episodic target state (oblique bar among vertical and horizontal bars). Search was efficient when the target display was presented as an isolated static display. Performance declined to near chance, however, when the same display was a single state of a dynamically changing scene (Experiment 1), as though temporal selection of the target display from the stream of stimulation failed entirely (Experiment 3). The deficit is attributable neither to masking (Experiment 2), nor to a lack of temporal marker for the target display (Experiment 4). The deficit was partially reduced by visually marking the target display with unique feature information (Experiment 5). We suggest that representational updating causes a loss of access to instantaneous state information in search. Similar to spatially crowded displays that are perceived as textures (Parkes, Lund, Angelucci, Solomon, & Morgan, 2001), we propose a temporal version of the trees (instantaneous orientation information) being lost for the forest (rotating bars).


Assuntos
Atenção/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Humanos , Adulto Jovem
3.
Atten Percept Psychophys ; 73(7): 2168-79, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21769535

RESUMO

Previous work has demonstrated that the ability to keep track of moving objects is improved when the objects have unique visual features, such as color or shape. In the present study, we investigated how orientation information is used during the tracking of objects. Orientation is an interesting feature to explore in moving objects because it is directional and is often informative of the direction of motion. Most objects move forward, in the direction they are oriented. In the present experiments, participants tracked a subset of moving isosceles triangles whose orientations were constant, related, or unrelated to the direction of motion. In the standard multiple object tracking (MOT) task, tracking performance improved when orientations were unique and remained constant, but not when orientation and direction of motion were aligned. In the target recovery task, in which MOT was interrupted by a brief blanking of the display, performance did improve when orientation and direction were aligned. In the final experiment, results showed that orientation was not used before the blank to predict future target locations, but was instead used after the blank. We concluded that people use orientation to compare a stored representation to target position for recovery of lost targets.


Assuntos
Atenção , Percepção de Cores , Percepção de Movimento , Orientação , Reconhecimento Visual de Modelos , Adulto , Discriminação Psicológica , Humanos , Mascaramento Perceptivo , Desempenho Psicomotor
4.
Front Hum Neurosci ; 4: 15, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20431723

RESUMO

Neuroimaging studies of biological motion perception have found a network of coordinated brain areas, the hub of which appears to be the human posterior superior temporal sulcus (STSp). Understanding the functional role of the STSp requires characterizing the response tuning of neuronal populations underlying the BOLD response. Thus far our understanding of these response properties comes from single-unit studies of the monkey anterior STS, which has individual neurons tuned to body actions, with a small population invariant to changes in viewpoint, position and size of the action being viewed. To measure for homologous functional properties on the human STS, we used fMR-adaptation to investigate action, position and size invariance. Observers viewed pairs of point-light animations depicting human actions that were either identical, differed in the action depicted, locally scrambled, or differed in the viewing perspective, the position or the size. While extrastriate hMT+ had neural signals indicative of viewpoint specificity, the human STS adapted for all of these changes, as compared to viewing two different actions. Similar findings were observed in more posterior brain areas also implicated in action recognition. Our findings are evidence for viewpoint invariance in the human STS and related brain areas, with the implication that actions are abstracted into object-centered representations during visual analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA