Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985448

RESUMO

Monitoring of pesticide concentration distribution across farm fields is crucial to ensure precise and efficient application while preventing overuse or untreated areas. Inspired by nature's wettability patterns, we developed a biomimetic fern leaf pesticide collection patch using laser-induced graphene (LIG) alongside an external electrochemical LIG biosensor. This "collect-and-sense" system allows for rapid pesticide spray monitoring in the farm field. The LIG is synthesized and patterned on polyimide through a high-throughput gantry-based CO2 laser process, making it amenable to scalable manufacturing. The resulting LIG-based leaf exhibits a remarkable water collection capacity, harvesting spray mist/fog at a rate approximately 11 times greater than a natural ostrich fern leaf when the collection is normalized to surface area. The developed three-electrode LIG pesticide biosensor, featuring a working electrode functionalized with electrodeposited platinum nanoparticles (PtNPs) and the enzyme glycine oxidase, displayed a linear range of 10-260 µM, a detection limit of 1.15 µM, and a sensitivity of 5.64 nA µM-1 for the widely used herbicide glyphosate. Also, a portable potentiostat with a user-friendly interface was developed for remote operation, achieving an accuracy of up to 97%, when compared to a standard commercial benchtop potentiostat. The LIG "collect-and-sense" system can consistently collect and monitor glyphosate spray after 24-48 hours of spraying, a time that corresponds to the restricted-entry interval required to enter most farm fields after pesticide spraying. Hence, this innovative "collect-and-sense" system not only advances precision agriculture by enabling monitoring and mapping of pesticide distribution but also holds the potential to significantly reduce environmental impact, enhance crop management practices, and contribute to the sustainable and efficient use of agrochemicals in modern agriculture.

2.
Glob Chall ; 6(9): 2200057, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176938

RESUMO

Glyphosate is a globally applied herbicide yet it has been relatively undetectable in-field samples outside of gold-standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers' urine, surface waters and crop residues. Rapid, on-site detection of glyphosate is hindered by lack of field-deployable and easy-to-use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum-decorated laser-induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10-260 µ m, detection limit of 3.03 µ m, and sensitivity of 0.991 nA µ m -1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4-dichlorophenoxyacetic acid, dicamba, parathion-methyl, paraoxon-methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct-write, and selective method of glyphosate detection for herbicide mapping and food analysis.

3.
ACS Nano ; 16(1): 15-28, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34812606

RESUMO

The integration of microfluidics and electrochemical cells is at the forefront of emerging sensors and energy systems; however, a fabrication scheme that can create both the microfluidics and electrochemical cells in a scalable fashion is still lacking. We present a one-step, mask-free process to create, pattern, and tune laser-induced graphene (LIG) with a ubiquitous CO2 laser. The laser parameters are adjusted to create LIG with different electrical conductivity, surface morphology, and surface wettability without the need for postchemical modification. Such definitive control over material properties enables the creation of LIG-based integrated open microfluidics and electrochemical sensors that are capable of dividing a single water sample along four multifurcating paths to three ion selective electrodes (ISEs) for potassium (K+), nitrate (NO3-), and ammonium (NH4+) monitoring and to an enzymatic pesticide sensor for organophosphate pesticide (parathion) monitoring. The ISEs displayed near-Nernstian sensitivities and low limits of detection (LODs) (10-5.01 M, 10-5.07 M, and 10-4.89 M for the K+, NO3-, and NH4+ ISEs, respectively) while the pesticide sensor exhibited the lowest LOD (15.4 pM) for an electrochemical parathion sensor to date. LIG was also specifically patterned and tuned to create a high-performance electrochemical micro supercapacitor (MSC) capable of improving the power density by 2 orders of magnitude compared to a Li-based thin-film battery and the energy density by 3 orders of magnitude compared to a commercial electrolytic capacitor. Hence, this tunable fabrication approach to LIG is expected to enable a wide range of real-time, point-of-use health and environmental sensors as well as energy storage/harvesting modules.


Assuntos
Grafite , Paration , Praguicidas , Grafite/química , Microfluídica , Eletrodos , Molhabilidade , Lasers , Condutividade Elétrica , Íons/química
4.
ACS Sens ; 6(8): 3063-3071, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34370948

RESUMO

Neonicotinoids are the fastest-growing insecticide accounting for over 25% of the global pesticide market and are capable of controlling a range of pests that damage croplands, home yards/gardens, and golf course greens. However, widespread use has led to nontarget organism decline in pollinators, insects, and birds, while chronic, sublethal effects on humans are still largely unknown. Therefore, there is a need to understand how prevalent neonicotinoids are in the environment as there are currently no commercially available field-deployable sensors capable of measuring neonicotinoid concentrations in surface waters. Herein, we report the first example of a laser-induced graphene (LIG) platform that utilizes electrochemical sensing for neonicotinoid detection. These graphene-based sensors are created through a scalable direct-write laser fabrication process that converts polyimide into LIG, which eliminates the need for chemical synthesis of graphene, ink formulation, masks, stencils, pattern rolls, and postprint annealing commonly associated with other printed graphene sensors. The LIG electrodes were capable of monitoring four major neonicotinoids (CLO, IMD, TMX, and DNT) with low detection limits (CLO, 823 nM; IMD, 384 nM; TMX, 338 nM; and DNT, 682 nM) and a rapid response time (∼10 s) using square-wave voltammetry without chemical/biological functionalization. Interference testing exhibited negligible responses from widely used pesticides including the broad-leaf insecticides parathion, paraoxon, and fipronil, as well as systemic herbicides glyphosate (roundup), atrazine, dicamba, and 2,4-dichlorophenoxyacetic acid. These scalable, graphene-based sensors have the potential for wide-scale mapping of neonicotinoids in watersheds and potential use in numerous electrochemical sensor devices.


Assuntos
Grafite , Inseticidas , Eletrodos , Humanos , Inseticidas/análise , Lasers , Neonicotinoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...