Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35626600

RESUMO

In this work, we outline the development of a thermodynamically consistent microscopic model for a suspension of aggregating particles under arbitrary, inertia-less deformation. As a proof-of-concept, we show how the combination of a simplified population-balance-based description of the aggregating particle microstructure along with the use of the single-generator bracket description of nonequilibrium thermodynamics, which leads naturally to the formulation of the model equations. Notable elements of the model are a lognormal distribution for the aggregate size population, a population balance-based model of the aggregation and breakup processes and a conformation tensor-based viscoelastic description of the elastic network of the particle aggregates. The resulting example model is evaluated in steady and transient shear forces and elongational flows and shown to offer predictions that are consistent with observed rheological behavior of typical systems of aggregating particles. Additionally, an expression for the total entropy production is also provided that allows one to judge the thermodynamic consistency and to evaluate the importance of the various dissipative phenomena involved in given flow processes.

2.
Soft Matter ; 17(47): 10591-10613, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34787149

RESUMO

Due to the potential impact on the diagnosis and treatment of various cardiovascular diseases, work on the rheology of blood has significantly expanded in the last decade, both experimentally and theoretically. Experimentally, blood has been confirmed to demonstrate a variety of non-Newtonian rheological characteristics, including pseudoplasticity, viscoelasticity, and thixotropy. New rheological experiments and the development of more controlled experimental protocols on more extensive, broadly physiologically characterized, human blood samples demonstrate the sensitivity of aspects of hemorheology to several physiological factors. For example, at high shear rates the red blood cells elastically deform, imparting viscoelasticity, while at low shear rates, they form "rouleaux" structures that impart additional, thixotropic behavior. In addition to the advances in experimental methods and validated data sets, significant advances have also been made in both microscopic simulations and macroscopic, continuum, modeling, as well as novel, multiscale approaches. We outline and evaluate the most promising of these recent developments. Although we primarily focus on human blood rheology, we also discuss recent observations on variations observed across some animal species that provide some indication on evolutionary effects.


Assuntos
Eritrócitos , Hemorreologia , Animais , Humanos , Reologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...