Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Endocrinol ; 73(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832641

RESUMO

The objective was to assess the potential differential effects of human versus mouse growth hormone in vivo, given that human unlike mouse growth hormone can bind prolactin as well as the growth hormone receptor. To this end, a transgenic CD-1 mouse expressing human but not mouse growth hormone was generated, and the phenotypes of male mice fed with a regular chow or high-fat diet were assessed. Pancreas and epididymal white adipose tissue gene expression and/or related function were targeted as the pancreas responds to both prolactin and growth hormone receptor signaling, and catabolic effects like lipolytic activity are more directly attributable to growth hormone and growth hormone receptor signaling. The resulting human growth hormone-expressing mice are smaller than wild-type CD-1 mice, despite higher body fat and larger adipocytes, but both mouse types grow at the same rate with similar bone densities. Unlike wild-type mice, there was no significant delay in glucose clearance in human growth hormone-expressing mice when assessed at 8 versus 24 weeks on a high-fat diet. However, both mouse types showed signs of hepatic steatosis that correlated with elevated prolactin but not growth hormone RNA levels. The larger adipocytes in human growth hormone-expressing mice were associated with modified leptin (higher) and adiponectin (lower) RNA levels. Thus, while limited to observations in the male, the human growth hormone-expressing mice exhibit signs of growth hormone insufficiency and adipocyte dysfunction as well as an initial resistance to the negative effects of high-fat diet on glucose clearance.


Assuntos
Tecido Adiposo , Dieta Hiperlipídica , Fígado Gorduroso , Glucose , Homeostase , Resistência à Insulina , Camundongos Transgênicos , Animais , Humanos , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Camundongos , Masculino , Glucose/metabolismo , Tecido Adiposo/metabolismo , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/genética , Prolactina/metabolismo , Leptina/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo
2.
BMC Womens Health ; 21(1): 117, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743677

RESUMO

BACKGROUND: Studies have found an association between obesity and an increased risk for peripartum depression, which has also been linked to decreased placental lactogen levels. In addition, women with obesity treated for gestational diabetes with insulin were found to have increased levels of placental lactogen. Treatment options exist for perinatal and postpartum depression however they pose a risk to the developing offspring. Thus, prevention as well as markers for early identification of peripartum depression are needed. Therefore, our study objective is to identify the association between insulin treatment in pregnancy and the risk of postpartum psychological distress (abbreviated here as PPD) among cohorts of women with and without obesity. METHODS: Administrative health data (2002/03-2018/19) were used to identify a cohort of women (age 15+ years) who gave birth (N = 250,746) and had no pre-existing mood/anxiety disorders or diabetes (N = 222,863 excluded). Women were then divided into two groups: lean (N = 17,975) and with obesity (N = 9908), which was identified by a recorded maternal weight of > 38 to < 65.6 kg and ≥ 85 to < 186 kg (respectively). The risk of PPD within one year after delivery with and without insulin treatment was assessed by Poisson regression analysis. Models were adjusted for maternal age group (at pregnancy start date) and area-level income (at delivery). RESULTS: The unadjusted risk of PPD was higher in the obesity group (8.56%; 95% CI 8.00-9.15) than in the lean group (6.93%; 95% CI 6.56-7.33). When no insulin treatment was given during pregnancy, mothers with obesity had a significantly higher risk of PPD than the lean group (aRR 1.27; 95% CI 1.17-1.39; p < 0.0001). However, when women with obesity and insulin treatment were compared to the lean group with no insulin treatment, no significant difference in the risk of PPD was observed between the groups (aRR 1.30; 95% CI 0.83-2.02; p = 0.248). CONCLUSION: This is the first study to demonstrate a positive association between insulin treatment in pregnancy among women with obesity and reduced PPD rates, suggesting insulin as a possible preventative measure. However, the biological mechanism behind the observed positive effect of insulin on PPD rates remains to be investigated.


Assuntos
Depressão Pós-Parto , Insulinas , Obesidade Materna , Saúde da População , Angústia Psicológica , Adolescente , Depressão Pós-Parto/epidemiologia , Feminino , Humanos , Placenta , Período Pós-Parto , Gravidez , Fatores de Risco
3.
DNA Cell Biol ; 40(3): 543-552, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33687272

RESUMO

Obesity in puberty, already a time of insulin resistance, increases the risk of developing type 2 diabetes. Human (h) growth hormone (GH) levels also peak during puberty, where it contributes to growth and energy homeostasis through positive effects on maintaining pancreatic ß cell mass. Thus, it is important to understand the effects of overeating and obesity on hGH production in puberty. Three days of overeating in young male adults or high-fat diet (HFD) in pubescent male transgenic (171hGH/CS) CD-1 mice containing the hGH gene (hGH-N) results in excess insulin and a decrease in hGH production. This reduction in these mice occurred during the light phase of the daily cycle, and was associated with decreased availability of the clock-related transcription factor Brain and Muscle ARNT-Like 1 (Bmal1). However, the HFD-induced decrease in hGH-N expression was blocked by forced daily swim activity, which is expected to increase glucocorticoid (GC) levels. The aim of the study was to assess whether GCs, specifically daily injections with a pharmacological dose of dexamethasone (DEX) in the light or dark phase of the daily cycle, can limit the negative effect of HFD for 3 days on hGH-N expression in male 171hGH/CS mice. DEX treatment increased or rescued hGH-N RNA levels, and was associated with elevated Bmal1 transcripts when assessed 12 h after final treatment, and at a time when serum corticosterone levels were suppressed >90%. In addition, a diet-dependent effect on hGH-N RNA levels was observed at 36 h after final treatment, but only in the light stage, presumably due to residual effects of DEX treatment and/or recovery of endogenous corticosterone levels. This is the first evidence for a direct effect of GCs on hGH-N expression in vivo and the ability to potentially limit the negative effect of overeating/obesity on hGH production in puberty.


Assuntos
Dexametasona/farmacologia , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento Humano/biossíntese , Animais , Hormônio do Crescimento Humano/genética , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Tempo
4.
Psychoneuroendocrinology ; 126: 105147, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497916

RESUMO

Obesity before and during pregnancy negatively affects the mental and physical health of the mother. A diet high in fat also increases the risk for anxiety, depression and cognitive dysfunction. We examined the effects of high fat diet (HFD) -induced obesity and pregnancy on maternal behavior, cognitive function and anxiety- and depression-like behaviors in mice. Four-week-old female CD-1 mice were placed on a HFD or regular chow diet (RCD) for 5 weeks. Mice were maintained on either diet as non-pregnant HFD and RCD groups, or allowed to breed, and then fed these diets throughout gestation, lactation and after weaning, as pregnant HFD and RCD groups. Mice on HFD but not on RCD for 5 weeks pre-pregnancy significantly gained weight and had impaired glucose clearance. Maternal behavior was assessed by nest building prepartum and pup-retrieval postpartum. Anxiety-like behavior was evaluated both prepartum and postpartum by elevated plus maze and cognitive function was assessed by the novel object recognition test postpartum. Anhedonia, a measure of impaired reward function, is an endophenotype of depression and was assessed by sucrose preference test pre- and post-weaning in dams. Mice on HFD in pregnancy exhibited both impaired maternal behavior and cognitive function in the postpartum period. We did not detect measurable differences between the HFD and RCD groups in anxiety-like behavior in the prepartum period. In contrast, HFD was also associated with anhedonia in pregnant mice pre-weaning, and anxiety-like behavior post-weaning. Thus, HFD has a negative effect on maternal behavior in the outbred CD-1 mouse, which provides a model to study associated outcomes and related mechanisms.


Assuntos
Anedonia , Dieta Hiperlipídica , Comportamento Materno , Obesidade , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Lactação , Camundongos , Obesidade/etiologia , Gravidez
5.
Endocr Connect ; 9(12): 1135-1147, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33112821

RESUMO

Human (h) growth hormone (GH) production studies are largely limited to effects on secretion. How pituitary hGH gene (hGH-N/GH1) expression is regulated is important in our understanding of the role hGH plays in physiology and disease. Here we assess for the first time the effect of sleep deprivation (SD) and high-fat diet (HFD) on hGH-N expression in vivo using partially humanized 171hGH/CS transgenic (TG) mice, and attempted to elucidate a role for DNA methylation. Activation of hGH-N expression requires interactions between promoter and upstream locus control region (LCR) sequences including pituitary-specific hypersensitive site (HS) I/II. Both SD and diet affect hGH secretion, but the effect of SD on hGH-N expression is unknown. Mice fed a HFD or regular chow diet for 3 days underwent SD (or no SD) for 6 h at Zeitgeber time (ZT) 3. Serum and pituitaries were assessed over 24 h at 6-h intervals beginning at ZT 14. SD and HFD caused significant changes in serum corticosterone and insulin, as well as hGH and circadian clock-related gene RNA levels. No clear association between DNA methylation and the negative effects of SD or diet on hGH RNA levels was observed. However, a correlation with increased methylation at a CpG (cytosine paired with a guanine) in a putative E-box within the hGH LCR HS II was suggested in situ. Methylation at this site also increased BMAL1/CLOCK-related nuclear protein binding in vitro. These observations support an effect of SD on hGH synthesis at the level of gene expression.

6.
J Neuroendocrinol ; 32(11): e12859, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32500948

RESUMO

The four genes coding for placental members of the human (h) growth hormone (GH) family include two that code independently for placental lactogen (PL), also known as chorionic somatomammotrophin hormone, one that codes for placental growth hormone (PGH) and a pseudogene for which RNA but no protein product is reported. These genes are expressed preferentially in the villus syncytiotrophoblast of the placenta in pregnancy. In higher primates, the placental members, including hPL and PGH, are the result of multiple duplication events of the GH gene. This contrasts with rodents and ruminants, where PLs result from duplication of the prolactin (PRL) gene. Thus, unlike their mouse counterparts, the hPL and PGH hormones bind both lactogenic and somatogenic receptors with varying affinity. Roles influenced by nutrient availability in both metabolic control in pregnancy and maternal behaviour are supported. However, the effect maternal obesity has on the activation of placental members of the hGH gene family, particularly the expression and function of those genes, is poorly understood. Evidence from partially humanised hGH/PL transgenic mice indicates that both the remote upstream hPL locus control region (LCR) and more gene-related regulatory regions are required for placental expression in vivo. Furthermore, a specific pattern of interactions between the LCR and hPL gene promoter regions is detected in term placenta chromatin from women with a normal body mass index (BMI) in the range 18.5-25 kg m-2 by chromosome conformation capture assay. This pattern is disrupted with maternal obesity (class II BMI > 35 kg m-2 ) and associated with a > 40% decrease in term hPL RNA levels, as well as serum hPL but not PRL levels, during pregnancy. The relative importance of the chromosomal architecture and predicted properties for transcription factor participation in terms of hPL production and response to obesity are considered, based on comparison with components required for efficient human pituitary GH gene expression.


Assuntos
Obesidade/metabolismo , Lactogênio Placentário/biossíntese , Gravidez/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Obesidade/genética , Placenta/metabolismo , Lactogênio Placentário/genética
7.
Alcohol Clin Exp Res ; 43(6): 1145-1162, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31074890

RESUMO

BACKGROUND: Based upon experimental animal studies, the neurodevelopmental abnormalities associated with prenatal alcohol exposure (PNAE)/fetal alcohol spectrum disorder (FASD) have been attributed, at least in part, to epigenetic modifications. However, there are no direct analyses of human brain tissue. METHODS: Immunohistochemical detection of global epigenetic markers was performed on temporal lobe samples of autopsied fetuses and infants with documented PNAE. They were compared to age-, sex-, and postmortem delay-matched control cases (18 pairs; 20 to 70.5 weeks postconception). Temporal lobe tissue from a macaque monkey model of PNAE was also studied (5.7 to 6 months of age). We used antibodies targeting 4 DNA cytosine, 4 histone methylation, and 6 histone acetylation modifications and assigned scores based upon the semiquantitatively graded intensity and proportion of positively labeled nuclei in the ventricular and subventricular zones, ependyma, temporal cortex, temporal white matter, dentate gyrus (DG), and CA1 pyramidal layer. RESULTS: Temporal changes were identified for almost all marks according to the state of maturation in the human brain. In the DG (and 3 other brain regions), a statistically significant increase in H3K9ac was associated with PNAE. Statistically significant decreases were seen among 5mC, H3K4me3, H3K9ac, H3K27ac, H4K12ac, and H4K16ac in select regions. In the macaques, H3K36me3 decreased in the DG, and the ependyma showed decreases in 5fC and H3K36me3. CONCLUSIONS: In human brain, global intranuclear epigenetic modifications are brain region and maturation state-specific. These exploratory results support the general hypothesis that PNAE is associated with a global decrease in DNA methylation, a global decrease in histone methylation, and a global increase in histone acetylation. Although the human and monkey subjects are not directly comparable in terms of brain maturation, considering the rapid temporal changes in global epigenetic modifications during brain development, interspecies comparisons may be extremely difficult.


Assuntos
Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Feto/efeitos dos fármacos , Exposição Materna , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Coortes , Metilação de DNA , Feminino , Feto/metabolismo , Feto/patologia , Código das Histonas , Humanos , Recém-Nascido , Macaca nemestrina , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Processamento de Proteína Pós-Traducional , Natimorto
8.
Clin Epigenetics ; 11(1): 5, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635019

RESUMO

BACKGROUND: Epigenetic (including DNA and histone) modifications occur in a variety of neurological disorders. If epigenetic features of brain autopsy material are to be studied, it is critical to understand the post-mortem stability of the modifications. METHODS: Pig and mouse brain tissue were formalin-fixed and paraffin-embedded, or frozen after post-mortem delays of 0, 24, 48, and 72 h. Epigenetic modifications frequently reported in the literature were studied by DNA agarose gel electrophoresis, DNA methylation enzyme-linked immunosorbent assays, Western blotting, and immunohistochemistry. We constructed a tissue microarray of human neocortex samples with devitalization or death to fixation times ranging from < 60 min to 5 days. RESULTS: In pig and mouse brain tissue, we found that DNA cytosine modifications (5mC, 5hmC, 5fC, and 5caC) were stable for ≥ 72 h post-mortem. Histone methylation was generally stable for ≥ 48 h (H3K9me2/K9me3, H3K27me2, H3K36me3) or ≥ 72 h post-mortem (H3K4me3, H3K27me3). Histone acetylation was generally less stable. The levels of H3K9ac, H3K27ac, H4K5ac, H4K12ac, and H4K16ac declined as early as ≤ 24 h post-mortem, while the levels of H3K14ac did not change at ≥ 48 h. Immunohistochemistry showed that histone acetylation loss occurred primarily in the nuclei of large neurons, while immunoreactivity in glial cell nuclei was relatively unchanged. In the human brain tissue array, immunoreactivity for DNA cytosine modifications and histone methylation was stable, while subtle changes were apparent in histone acetylation at 4 to 5 days post-mortem. CONCLUSION: We conclude that global epigenetic studies on human post-mortem brain tissue are feasible, but great caution is needed for selection of post-mortem delay matched controls if histone acetylation is of interest.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Autopsia , Epigênese Genética , Feminino , Humanos , Masculino , Camundongos , Suínos , Análise Serial de Tecidos/métodos
9.
J Neuropathol Exp Neurol ; 76(9): 813-833, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859338

RESUMO

Fetal alcohol spectrum disorder (FASD) is a common neurodevelopmental problem, but neuropathologic descriptions are rare and focused on the extreme abnormalities. We conducted a retrospective survey (1980-2016) of autopsies on 174 individuals with prenatal alcohol exposure or an FASD diagnosis. Epidemiologic details and neuropathologic findings were categorized into 5 age groups. Alcohol exposure was difficult to quantify. When documented, almost all mothers smoked tobacco, many abused other substances, and prenatal care was poor or nonexistent. Placental abnormalities were common (68%) in fetal cases. We identified micrencephaly (brain weight <5th percentile) in 31, neural tube defects in 5, isolated hydrocephalus in 6, corpus callosum defects in 6 (including some with complex anomalies), probable prenatal ischemic lesions in 5 (excluding complications of prematurity), minor subarachnoid heterotopias in 4, holoprosencephaly in 1, lissencephaly in 1, and cardiac anomalies in 26 cases. The brain abnormalities associated with prenatal alcohol exposure are varied; cause-effect relationships cannot be determined. FASD is likely not a monotoxic disorder. The animal experimental literature, which emphasizes controlled exposure to ethanol alone, is therefore inadequate. Prevention must be the main societal goal, however, a clear understanding of the neuropathology is necessary for provision of care to individuals already affected.


Assuntos
Álcoois/toxicidade , Encéfalo/anormalidades , Encéfalo/patologia , Transtornos do Espectro Alcoólico Fetal/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Adolescente , Adulto , Fatores Etários , Idoso , Encéfalo/efeitos dos fármacos , Criança , Pré-Escolar , Feminino , Transtornos do Espectro Alcoólico Fetal/epidemiologia , Feto , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Estudos Retrospectivos , Natimorto/epidemiologia , Adulto Jovem
10.
Biology (Basel) ; 3(4): 670-723, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25340699

RESUMO

Epigenetics refers to a variety of processes that have heritable effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are chemical modifications to DNA, histone, and non-histone chromosomal proteins, which establish a complex regulatory network that controls genome function. Methylation of DNA at the fifth position of cytosine in CpG dinucleotides (5-methylcytosine, 5mC), which is carried out by DNA methyltransferases, is commonly associated with gene silencing. However, high resolution mapping of DNA methylation has revealed that 5mC is enriched in exonic nucleosomes and at intron-exon junctions, suggesting a role of DNA methylation in the relationship between elongation and RNA splicing. Recent studies have increased our knowledge of another modification of DNA, 5-hydroxymethylcytosine (5hmC), which is a product of the ten-eleven translocation (TET) proteins converting 5mC to 5hmC. In this review, we will highlight current studies on the role of 5mC and 5hmC in regulating gene expression (using some aspects of brain development as examples). Further the roles of these modifications in detection of pathological states (type 2 diabetes, Rett syndrome, fetal alcohol spectrum disorders and teratogen exposure) will be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...