Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Phys Eng ; 13(1): 65-76, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36818005

RESUMO

Background: Mobility of lung tumors is induced by respiration and causes inadequate dose coverage. Objective: This study quantified lung tumor motion, velocity, and stability for small (≤5 cm) and large (>5 cm) tumors to adapt radiation therapy techniques for lung cancer patients. Material and Methods: In this retrospective study, 70 patients with lung cancer were included that 50 and 20 patients had a small and large gross tumor volume (GTV). To quantify the tumor motion and velocity in the upper lobe (UL) and lower lobe (LL) for the central region (CR) and a peripheral region (PR), the GTV was contoured in all ten respiratory phases, using 4D-CT. Results: The amplitude of tumor motion was greater in the LL, with motion in the superior-inferior (SI) direction compared to the UL, with an elliptical motion for small and large tumors. Tumor motion was greater in the CR, rather than in the PR, by 63% and 49% in the UL compared to 50% and 38% in the LL, for the left and right lung. The maximum tumor velocity for a small GTV was 44.1 mm/s in the LL (CR), decreased to 4 mm/s for both ULs (PR), and a large GTV ranged from 0.4 to 9.4 mm/s. Conclusion: The tumor motion and velocity depend on the tumor localization and the greater motion was in the CR for both lobes due to heart contribution. The tumor velocity and stability can help select the best technique for motion management during radiation therapy.

2.
Radiat Environ Biophys ; 61(4): 651-660, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098818

RESUMO

In this paper, a dosimetric end-to-end test of respiratory gated radiation therapy (RGRT) applied in lung cancer stereotactic body radiation therapy (SBRT) was performed. The test was performed from treatment simulation to treatment delivery using a QUASAR phantom, for regular, slightly irregular and irregular breathing patterns in phase- and amplitude-gated modes. A mechanical and dosimetric verification was performed to evaluate all steps of the proposed treatment workflow. Dose measurements were performed using a PinPoint ion chamber and GafChromic EBT3 films. Mechanical verification confirmed good function of the chosen systems. Dosimetric verification showed good agreement between planned and measured doses, for the phase-gated versus amplitude-gated modes: 1.4 ± 0.4% versus 1.2 ± 0.2% for regular, 2.8 ± 0.3% versus 3.0 ± 0.3% for slightly irregular, and 6.2 ± 0.7% versus 7.4 ± 0.5% for irregular breathing patterns. The gamma passing rates for 3%/3 mm and 2%/2 mm criteria, comparing phase- versus amplitude-gated modes, were 99.0 ± 0.3% versus 99.5 ± 0.2% and 95.2 ± 0.2% versus 96.1 ± 0.2% for the regular, 97.4 ± 0.8% versus 98.0 ± 0.6% and 91.7 ± 0.5% versus 92.4 ± 0.4% for the slightly irregular, and 96.4 ± 0.5% versus 95.3 ± 0.7% and 86.4 ± 0.5% versus 84.6 ± 0.7% for the irregular breathing patterns, respectively. It is concluded that using equipment and workflow for the treatment of lung cancer by means of SBRT in RGRT mode is safe and efficient, for regular and slightly irregular breathing patterns.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Respiração , Imagens de Fantasmas , Pulmão , Neoplasias Pulmonares/radioterapia
3.
Med Dosim ; 47(2): 151-157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35093268

RESUMO

The impact of irregular breathing on respiratory gated radiation therapy (RGRT) was evaluated for lung stereotactic body radiation therapy (SBRT) treatments. Measurements in the static mode were performed with different field sizes, depths of the measurements, breathing periods and duty cycles, using the Farmer ion chamber, PinPoint ion chamber, and microDiamond detector. The output constancy (OC) was evaluated between gated and nongated beams. Measurements in the dynamic mode for regular and irregular breathing in phase- and amplitude-gated modes, were performed with the amplitude of target motion from 5 mm to 25 mm, and breathing period from 3 to 6 s, for ion chamber, and film inserts. The dose discrepancy was evaluated for the ion chamber insert. The gamma passing rate was evaluated with film dosimetry. In the static mode, the maximum obtained OC was 0.8% using the Farmer ion chamber, 1% (p < 0.001) using the microDiamond detector, and 1.4% (p < 0.001) using the PinPoint ion chamber. In the dynamic mode, good agreement between planned and measured doses was obtained for regular breathing, 2.08 ± 0.48% (1.57 to 2.74%), which increased to 3.42 ± 1.24% (1.58 to 6.69%) for irregular breathing. The gamma passing rate of 3mm/3%, 3mm/2%, 3mm/1% and 2mm/2% was 99.4% ± 0.3, 98.2 ± 0.8%, 88.2 ± 3.0% and 96.4 ± 1.0% for regular and 97.2% ± 1.6%, 95.1 ± 2.6%, 85.6 ± 3.0% and 92.9 ± 2.9% for irregular breathing patterns (p < 0.01), respectively. For a slightly irregular breathing amplitude, lung SBRT cancer patients can be treated in the phase-gated mode.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Pulmão , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
J Med Phys ; 46(2): 73-79, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566286

RESUMO

INTRODUCTION: This study compared phase-gated and amplitude-gated dose deliveries to the moving gross tumor volume (GTV) in lung stereotactic body radiation therapy (SBRT) using Gafchromic External Beam Therapy (EBT3) dosimetry film. MATERIALS AND METHODS: Eighty treatment plans using two techniques (40 phase gated and 40 amplitude gated) were delivered using dynamic conformal arc therapy (DCAT). The GTV motion, breathing amplitude, and period were taken from 40 lung SBRT patients who performed regular breathing. These parameters were re-simulated using a modified Varian breathing mini phantom. The dosimetric accuracy of the phase- and amplitude-gated treatment plans was analyzed using Gafchromic EBT3 dosimetry film. The treatment delivery efficacy was analyzed for gantry rotation, number of monitor unit (MU), and target position per triggering window. The time required to deliver the phase- and amplitude-gated treatment techniques was also evaluated. RESULTS: The mean dose (range) per fraction was 16.11 ± 0.91 Gy (13.04-17.50 Gy) versus 16.26 ± 0.83 Gy (13.82-17.99 Gy) (P < 0.0001) for phase- and amplitude-gated delivery. The greater difference in the gamma passing rate was 1.2% ±0.4% in the amplitude-gated compared to the phase gated. The gantry rotation per triggering time (tt) was 2° ±1° (1.2°-3°) versus 5° ±1° (3°-6°) (P < 0.0001) and MU per tt was 10 ± 3 MU (6-13 MU) versus 24 ± 7 MU (12-32 MU) (P < 0.0001), for phase- versus amplitude-gated techniques. A 90 beam interruption in the phase-gated technique impacted the treatment delivery efficacy, increasing the treatment delivery time in the phase gated for 1664 ± 202 s 1353-1942 s) compared to 36 interruptions in the amplitude gated 823 ± 79 s (712-926 s) (P < 0.0001). CONCLUSION: Amplitude-gated DCAT allows for better dosimetric accuracy over phase-gated treatment patients with regular breathing patterns.

5.
Acta Oncol ; 60(10): 1296-1300, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34259116

RESUMO

BACKGROUND: To evaluate the impact of the planning target volume (PTV) density on treatment planning for lung Stereotactic Body Radiation Therapy (SBRT). MATERIAL AND METHODS: The PTV coverage was analyzed in two groups of 40 lung SBRT patients. One group had PTV density <0.5 g/cm3, while the other group had PTV density >0.5 g/cm3. The treatments were planned in Pinnacle 9.10, using the collapsed cone convolution (CCC) algorithm. The prescribed dose was 60 Gy to the PTV in 4-8 fractions. Respecting constraint for the PTV coverage (D98% > 95%), we compared changes in the isodose line prescription, the number of monitor units (MU), maximum dose (Dmax), irradiated volume covered with 30 Gy (V30Gy), and the optimization planning volume (OPV). RESULTS: For the same median values of the PTV coverage (98.3%), the differences are presented with median values between lower and higher density than 0.5 g/cm3. The isodose line prescription was 83 vs. 90% (p < 0.0001), the MUs were 2294 vs. 1655 MU (p < 0.0001), Dmax was 74.26 vs. 68.09 Gy (p < 0.0001), V30Gy was 117.03 vs. 104.81 cc (p = 0.04), and OPV was 28.48 vs. 39.35 cc (p < 0.001). By overriding the ITV density to 0.8 g/cm3, the isodose line prescription decreases. The Dmax and MUs decrease by 7%, V30Gy by 34%, and OPV by 70%. CONCLUSION: To obtain similar PTV coverage for PTV which is <0.5 g/cm3, a larger margin irradiating a large OPV was used. More MUs and a higher maximum dose were delivered. For the PTV density of ≤0.36 g/cm3, overriding is recommended to reduce the dose and irradiated volume.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Pulmão , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
J Biomed Phys Eng ; 11(2): 125-134, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33937120

RESUMO

BACKGROUND: The use of imaging is indispensable in modern radiation therapy, both for simulation and treatment delivery. For safe and sure utilization, dose delivery from imaging must be evaluated. OBJECTIVE: This study aims to investigate the dose to organ at risk (OAR) delivered by imaging during lung stereotactic body radiation therapy (SBRT) and to evaluate its contribution to the treatment total dose. MATERIAL AND METHODS: In this retrospectively study, imaging total dose to organs at risk (OARs) (spinal cord, esophagus, lungs, and heart) and effective dose were retrospectively evaluated from 100 consecutive patients of a single institution who had lung SBRT. For each patient, dose was estimated using Monte-Carlo convolution for helical computed tomography (helical CT), Four-Dimensional CT (4D-CT), and kilovoltage Cone-Beam CT (kV-CBCT). Helical CT and kV-CBCT dose were evaluated for the entire thorax acquisition, while 4D-CT dose was analyzed on upper lobe (UL) or lower lobe (LL) acquisition. Treatment dose was extracted from treatment planning system and compared to imaging total dose. RESULTS: Imaging total dose maximum values were 117 mGy to the spinal cord, 127 mGy to the esophagus, 176 mGy to the lungs and 193 mGy to the heart. The maximum effective dose was 19.65 mSv for helical CT, 10.62 mSv for kV-CBCT, 25.95 mSv and 38.45 mSv for 4D-CT in UL and LL regions, respectively. Depending on OAR, treatment total dose was higher from 1.7 to 8.2 times than imaging total dose. Imaging total dose contributed only to 0.3% of treatment total dose. CONCLUSION: Imaging dose delivered with 4D-CT to the OARs is higher than those of others modalities. The heart received the highest imaging dose for both UL and LL. Total imaging dose is negligible since it contributed only to 0.3% of treatment total dose.

7.
Med Dosim ; 46(3): 274-278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33766492

RESUMO

The aim of this study was to evaluate thoracic surface motion from chest wall expansion during free breathing (FB) and deep inspiration breath hold (DIBH) methods, measured with and without 4-dimensional computed tomography (4D-CT) simulation, using equipment developed in-house. The respiratory amplitude and chest wall expansion were evaluated at 5 levels of the thorax, (the sterno-clavicular joint (SCJ), the second level, the intermammary line (IML), the fourth level and the caudal end of the xiphoid process (XP)) using radiopaque wires and potentiometers, with a CT scan simultaneously. This study included 25 examinees (10 volunteers performed FB, 10 volunteers performed DIBH and 5 patients performed FB). For low and irregular respiration, coaching was used, and its impact was evaluated for both breathing methods, FB and DIBH. The breathing amplitude performed with FB between volunteers and patients was not detectable at the SCJ; increasing to the abdomen, 3 mm vs 2 mm (p = 0.326) at the second level; 6 mm vs 4 mm (p = 0.042) at the IML; 10 mm vs 8 mm (p < 0.01) at the fourth level; and 23 mm vs 19 mm (p < 0.001) at the XP. Contrary to the DIBH, where breathing amplitude was greater at 2 first levels 18 mm (SCJ) and 20 mm (second level), decreasing to the abdomen, 14 mm (IML); 11 mm (fourth level); and 10 mm (XP). Chest wall expansion was not detected at the SCJ, while at other levels measured from 1 to 7 mm. Coaching was improve breathing amplitude, for both methods, FB (3 mm) and DIBH (5 mm). The location of amplification is different depending on the breathing method and the in-house phantom was useful to check the amplification level.


Assuntos
Suspensão da Respiração , Planejamento da Radioterapia Assistida por Computador , Humanos , Órgãos em Risco , Respiração , Tórax , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...