Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Low Temp Phys ; 193: 886-892, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38515616

RESUMO

Microwave SQUID multiplexing is a promising technique for multiplexing large arrays of transition edge sensors. A major bottleneck in the development and distribution of microwave SQUID multiplexer chips occurs in the time-intensive design testing and quality assurance stages. To obtain useful RF measurements, these devices must be cooled to temperatures below 500 mK. The need for a more efficient system to screen microwave multiplexer chips has grown as the number of chips requested by collaborators per year reaches into the hundreds. We have therefore assembled a test bed for microwave SQUID circuits, which decreases screening time for four 32-channel chips from 24 h in an adiabatic demagnetization refrigerator to approximately 5 h in a helium dip probe containing a closed cycle 3He sorption refrigerator. We discuss defining characteristics of these microwave circuits and the challenges of establishing an efficient testing setup for them.

2.
Rev Sci Instrum ; 88(4): 045112, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456220

RESUMO

We present a vacuum window mechanism that is useful for applications requiring two different vacuum windows in series, with one of them movable and resealable. Such applications include space borne instruments that can benefit from a thin vacuum window at low ambient pressures but must also have an optically open aperture at atmospheric pressures. We describe the implementation and successful operation with the E and B experiment balloon-borne payload, a millimeter-wave instrument designed to measure the polarization of the cosmic microwave background radiation.

3.
Rev Sci Instrum ; 87(9): 094503, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27782567

RESUMO

We present an evaluation of systematic effects associated with a continuously rotating, ambient-temperature half-wave plate (HWP) based on two seasons of data from the Atacama B-Mode Search (ABS) experiment located in the Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive at 145 GHz. Here we present our in-field evaluation of celestial (Cosmic Microwave Background (CMB) plus galactic foreground) temperature-to-polarization leakage. We decompose the leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar leakage of ∼0.01%, consistent with model expectations and an order of magnitude smaller than other CMB experiments have been reported. No significant dipole or quadrupole terms are detected; we constrain each to be <0.07% (95% confidence), limited by statistical uncertainty in our measurement. Dipole and quadrupole leakage at this level lead to systematic error on r ≲ 0.01 before any mitigation due to scan cross-linking or boresight rotation. The measured scalar leakage and the theoretical level of dipole and quadrupole leakage produce systematic error of r < 0.001 for the ABS survey and focal-plane layout before any data correction such as so-called deprojection. This demonstrates that ABS achieves significant beam systematic error mitigation from its HWP and shows the promise of continuously rotating HWPs for future experiments.

4.
Rev Sci Instrum ; 85(2): 024501, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593374

RESUMO

We evaluate the modulation of cosmic microwave background polarization using a rapidly rotating, half-wave plate (HWP) on the Atacama B-Mode Search. After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 s, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly rotating HWP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...