Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 16(6): 1071-8, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11101336

RESUMO

A variety of contactor types have been assessed for the liquid-liquid extraction of proteins using reversed micelles; however, many of these contactors suffer from drawbacks such as emulsion formation and poor mass transfer performance. In this study, a small (1.25 L) Graesser "raining bucket" contactor was assessed for use with this system since it has the potential to ameliorate many of these problems. The aim of the work was to evaluate the hydrodynamics of the contactor in order to use this information for future work on mass transfer performance. Hydrodynamic characteristics such as the axial mixing coefficient were determined by residence time distribution studies using a tracer injection method. The effect of rotor speed and flow rate of each phase on axial mixing was investigated, and as a result of its unusual structure, i.e., falling/rising sheet, the interfacial mass transfer area in the Graesser was determined by image analysis. It was found that rotor speed had more influence on the axial mixing coefficient in the aqueous phase than in the reverse micellar phase. The axial mixing coefficient in each phase increased by increasing the flow rate of the same phase. The images obtained in a dropping cell showed that under the conditions of this study (3 rpm, 22 degrees C), the bucket pours one phase through the other in the form of a curtain or sheet. A new image technique was developed to determine the interfacial area of both phases, and it was found that the specific area was 8.6 m(2)/m(3), which was higher than in a spray column but considerably lower than in a RDC or a Graesser run at high rotational speed (50 rpm) without the addition of a surfactant.


Assuntos
Micelas , Proteínas/isolamento & purificação , Desenho de Equipamento
2.
Biotechnol Bioeng ; 69(6): 618-26, 2000 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-10918136

RESUMO

The gentle mixing characteristics of a Graesser contactor can help to avoid the formation of stable emulsions, which is one advantage of this type of contactor when used with reversed micellar extraction. In this study, the performance of the Graesser contactor in lysozyme extraction from hen egg white is investigated. The concentration profile of lysozyme in the aqueous and organic phases indicated that, while substantial axial mixing occurred in the contactor, the extraction yield was in the range of 97% to 99%. The number of mass transfer units (N(ox)) was determined using a diffusion model, and the influence of aqueous-to-organic phase flow ratio, rotor speed, and total throughput on contactor performance was studied. It was found that the diffusion model could describe quite well the extraction of lysozyme from hen egg white using reversed micelles. The optimal conditions for the extraction at steady state were found to be a rotor speed of 5 rpm, an aqueous-to-organic phase flow ratio of 60:20 mL/min, and a total throughput of 80 mL/min. In addition, back-extraction was also performed using the conventional method (1.5 M KBr at pH 11.5) in the contactor. It was found that this mass transfer was not well described by a diffusion model, although 85% of the lysozyme could be recovered with the operating conditions used: a rotor speed of 10 rpm, and an aqueous-to-organic flow rate of 10:10 mL/min.


Assuntos
Biotecnologia/instrumentação , Biotecnologia/métodos , Muramidase/isolamento & purificação
3.
Bioseparation ; 9(2): 81-91, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10892541

RESUMO

The liquid-liquid extraction of protein from buffered aqueous phases using reverse micelles (RM) has been extensively researched from a fundamental point of view. However, very little effort has been expended at scaling up this process for the extraction of real fermentation broth. When real broths are used with reverse micellar phases there are major problems with emulsion formation. In this study the effect of a variety of demulsifiers on lysozyme extraction was evaluated in terms of their influence on the separating properties of the emulsion, water content (Wo), and, extraction yield and kinetics from both buffer and hen egg white. In addition, the use of a low shear contactor (a Graesser or 'raining bucket') was assessed in terms of its suitability as a RM contactor. It was found that most of the demulsifiers reduced the settling time of the emulsion, and enhanced the yield and kinetics of lysozyme extraction from hen egg white. It was hypothesised that this was due to the demulsifier displacing the lysozyme from the interface and preventing the protein unfolding and precipitating. This effect was found to depend on both the generic type of demulsifier, and its concentration.


Assuntos
Muramidase/isolamento & purificação , Animais , Biotecnologia , Soluções Tampão , Feminino , Indicadores e Reagentes , Micelas , Óvulo/enzimologia
4.
Biotechnol Bioeng ; 62(5): 593-601, 1999 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-10099568

RESUMO

The back-extraction of proteins encapsulated in AOT reverse micelles was performed by adding a counterionic surfactant, either TOMAC or DTAB. This novel backward transfer method gave higher backward extraction yields compared to the conventional method with high salt and high pH of the aqueous stripping solution. The protein activity was maintained in the resulting aqueous phase, which in this case had a near neutral pH and low salt concentration. A sharp decrease of the water content was observed in the organic phase corresponding to protein back-extraction using TOMAC. The backward transfer mechanism was postulated to be caused by electrostatic interaction between oppositely charged surfactant molecules, which lead to the collapse of the reverse micelles. The back-extraction process with TOMAC was found to be very fast; more than 100 times faster than back-extraction with the conventional method, and as much as 3 times faster than forward extraction. The formation of 1:1 complexes of AOT and TOMAC in the solvent phase was observed, and these hydrophobic complexes could be efficiently removed from the solvent using adsorption onto Montmorillonite in order for the organic solvent to be reused. A second cationic surfactant, DTAB, confirmed the general applicability of counterionic surfactants for the backward transfer of proteins.


Assuntos
Proteínas/isolamento & purificação , Tensoativos , Adsorção , Biotecnologia , Grupo dos Citocromos c/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Métodos , Micelas , Muramidase/isolamento & purificação , Compostos de Amônio Quaternário , Ribonuclease Pancreático/isolamento & purificação , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...