Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141545, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430945

RESUMO

This study investigates the enhancement of hydrogen gas-sensing performance by introducing silver (Ag) nanoparticles onto tungsten trioxide (WO3) thin films. Herein, the WO3 thin films are deposited onto SiO2/Si substrates using a sputtering technique and Ag nanoparticles are loaded onto the WO3 surface through a spin coating technique. To evaluate the sensing performance of a hydrogen gas, interdigitated titanium (Ti) electrodes are deposited onto the Ag:WO3 layer. Structural, chemical, and morphological analyses are conducted for both pristine WO3 and Ag:WO3 thin films, followed by the investigation of gas-sensing performance by varying hydrogen gas concentrations from 100 ppm to 300 ppm and operating temperatures between 30 °C and 300 °C. The obtained results demonstrate that Ag:WO3 thin films exhibit a notably enhanced response of 5.08% when exposed to a concentration of 100 ppm of hydrogen gas at room temperature, compared to the pristine WO3 of 3.40%. The fabricated Ag:WO3 sensor exhibits a response time of 3.0 s, a recovery time of 4.5 s, and also demonstrates excellent stability over 45 days period. Finally, with the superior sensitivity and fast response time, the fabricated Ti/Ag:WO3/Ti hydrogen gas sensor test-device can be a potential for improvement of safety from both industrial and environmental perspectives.


Assuntos
Hidrogênio , Nanopartículas Metálicas , Hidrogênio/análise , Temperatura , Dióxido de Silício , Prata/química
2.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37688215

RESUMO

Sapota is an important climacteric fruit with limited shelf life. A special system must be employed to extend the shelf life of sapota fruits. In the present study, polyvinyl alcohol (PVA) and montmorillonite clay (MMt)-based bio-nanocomposite films (BNFs) were integrated at various concentrations (2%, 4%, 6%, and 8%) into cellulose nanocrystals (CNCs), produced from garlic peels (GPs). The BNF loaded with 8% CNC has a better crystallinity index and mechanical properties than the other concentrations of CNC. Therefore, the 8% CNC-incorporated BNF (BNF-8) was selected for further packaging studies. The combined effect of BNF-8 with ajwain essential oil (AO) and oregano essential oil (OO) vapors and BNF-8 with carbendazim (commercial fungicide-CARB) were investigated. In this study, the BNF-based packagings are categorized into five types, viz: BNF+8% CNC (BNF-8), BNF-8+AO, BNF-8+OO, BNF-8+CARB and the non-packaged fruits (control). The shelf-life duration, antioxidant activity, firmness, decay index, and sensory quality were evaluated in order to identify the effectiveness of packaging treatment on sapota fruits. BNF-8+CARB, BNF-8+AO, and BNF-8+OO packaging extended the shelf life of sapota fruits to up to 12 days and maintained the overall physiochemical parameters and sensory qualities of the fruits. Therefore, the BNF-8+AO and BNF-8+OO packaging materials are appropriate alternatives to commercial fungicides for the preservation of sapota during postharvest storage.

3.
Int J Biol Macromol ; 242(Pt 2): 124861, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192712

RESUMO

The aim of this research work is to improve the mechanical and water-resistance properties of soy protein isolate (SPI) biofilm. In this work, 3-aminopropyltriethoxysilane (APTES) coupling-agent modified nanocellulose was introduced into the SPI matrix in the presence of citric acid cross-linker. The presence of amino groups in APTES facilitated the formation of - cross-linked structures with soy protein. The incorporation of a citric acid cross-linker made the cross-linking process more productive, and the surface smoothness of the film was confirmed by a Scanning Electron Microscope (FE-SEM). From the study of the mechanical and thermal properties and water resistance of the film, it was confirmed that the results were highly satisfactory for the modified nanocellulose-incorporated film compared to the non-modified one. Additionally, coating of citral essential oil onto SPI nanocomposite film displayed antimicrobial properties due to the presence of various phenolic groups in the citral oil. The Tensile Strength and Young's Modulus of silane-modified nanocellulose containing film were enhanced by ∼119 % and âˆ¼ 112 %, respectively on incorporation of 1 % APTES-modified nanocellulose. Consequently, this work is expected to offer an effective way for silylated nano-cellulose reinforcing soy protein isolate (SPI)-based bio nanocomposite films for packaging applications. As an example, we have demonstrated one of the applications as wrapping films for packing black grapes.


Assuntos
Proteínas de Soja , Água , Permeabilidade , Celulose , Resistência à Tração , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...