Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 239: 113562, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675735

RESUMO

Preservation of analyte integrity during focused ion beam (FIB) sample preparation is a significant challenge in the scanning transmission electron microscopy (STEM) characterization of plan-view samples with sensitive surface chemistries. This can preclude the characterization of atomic arrangements, nanoscale surface coverages, and distributions and morphologies of functional molecular materials composed of surface-immobilized metal nanoparticles, clusters or coordination complexes. This work demonstrates effective protection of Pt nanoparticle (NP) morphology through a plan-view FIB lift-out and thinning procedure by encapsulating the sample surface in an Al2O3 overlayer grown by atomic layer deposition (ALD). High-angle annular dark field (HAADF)-STEM analysis was used in concert with energy dispersive X-ray spectroscopy (EDS) to identify and image sub-10 nm features attributed to Pt and to evaluate the distribution of implanted Ga+ (derived from the FIB milling beam). ALD is a mild chemical vapor deposition (CVD) technique that has the capability to generate dense, pinhole-free films with tunable compositions and properties, making this ALD-FIB procedure applicable to many sample architectures for plan-view lamella preparation and STEM analysis.


Assuntos
Nanopartículas Metálicas , Microscopia Eletrônica de Transmissão e Varredura , Espectrometria por Raios X
2.
Nat Commun ; 5: 3949, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24862287

RESUMO

Development of efficient, affordable electrocatalysts for the oxygen evolution reaction and the oxygen reduction reaction is critical for rechargeable metal-air batteries. Here we present lithium cobalt oxide, synthesized at 400 °C (designated as LT-LiCoO2) that adopts a lithiated spinel structure, as an inexpensive, efficient electrocatalyst for the oxygen evolution reaction. The catalytic activity of LT-LiCoO2 is higher than that of both spinel cobalt oxide and layered lithium cobalt oxide synthesized at 800 °C (designated as HT-LiCoO2) for the oxygen evolution reaction. Although LT-LiCoO2 exhibits poor activity for the oxygen reduction reaction, the chemically delithiated LT-Li1-xCoO2 samples exhibit a combination of high oxygen reduction reaction and oxygen evolution reaction activities, making the spinel-type LT-Li0,5CoO2 a potential bifunctional electrocatalyst for rechargeable metal-air batteries. The high activities of these delithiated compositions are attributed to the Co4O4 cubane subunits and a pinning of the Co(3+/4+):3d energy with the top of the O(2-):2p band.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...