Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 9(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998094

RESUMO

Breast cancer's high mortality rate is often linked to late diagnosis, with mammograms as key but sometimes limited tools in early detection. To enhance diagnostic accuracy and speed, this study introduces a novel computer-aided detection (CAD) ensemble system. This system incorporates advanced deep learning networks-EfficientNet, Xception, MobileNetV2, InceptionV3, and Resnet50-integrated via our innovative consensus-adaptive weighting (CAW) method. This method permits the dynamic adjustment of multiple deep networks, bolstering the system's detection capabilities. Our approach also addresses a major challenge in pixel-level data annotation of faster R-CNNs, highlighted in a prominent previous study. Evaluations on various datasets, including the cropped DDSM (Digital Database for Screening Mammography), DDSM, and INbreast, demonstrated the system's superior performance. In particular, our CAD system showed marked improvement on the cropped DDSM dataset, enhancing detection rates by approximately 1.59% and achieving an accuracy of 95.48%. This innovative system represents a significant advancement in early breast cancer detection, offering the potential for more precise and timely diagnosis, ultimately fostering improved patient outcomes.

2.
Proteins ; 91(12): 1800-1810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37622458

RESUMO

Ribonucleic acid (RNA) molecules serve as master regulators of cells by encoding their biological function in the ribonucleotide sequence, particularly their ability to interact with other molecules. To understand how RNA molecules perform their biological tasks and to design new sequences with specific functions, it is of great benefit to be able to computationally predict how RNA folds and interacts in the cellular environment. Our workflow for computational modeling of the 3D structures of RNA and its interactions with other molecules uses a set of methods developed in our laboratory, including MeSSPredRNA for predicting canonical and non-canonical base pairs, PARNASSUS for detecting remote homology based on comparisons of sequences and secondary structures, ModeRNA for comparative modeling, the SimRNA family of programs for modeling RNA 3D structure and its complexes with other molecules, and QRNAS for model refinement. In this study, we present the results of testing this workflow in predicting RNA 3D structures in the CASP15 experiment. The overall high score of the computational models predicted by our group demonstrates the robustness of our workflow and its individual components in terms of predicting RNA 3D structures of acceptable quality that are close to the target structures. However, the variance in prediction quality is still quite high, and the results are still too far from the level of protein 3D structure predictions. This exercise led us to consider several improvements, especially to better predict and enforce stacking interactions and non-canonical base pairs.


Assuntos
RNA , RNA/química , Conformação de Ácido Nucleico , Modelos Moleculares , Pareamento de Bases , Simulação por Computador
3.
Protein Sci ; 32(1): e4503, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369832

RESUMO

The biologically relevant structures of proteins and nucleic acids and their complexes are dynamic. They include a combination of regions ranging from rigid structural segments to structural switches to regions that are almost always disordered, which interact with each other in various ways. Comparing conformational changes and variation in contacts between different conformational states is essential to understand the biological functions of proteins, nucleic acids, and their complexes. Here, we describe a new computational tool, 1D2DSimScore, for comparing contacts and contact interfaces in all kinds of macromolecules and macromolecular complexes, including proteins, nucleic acids, and other molecules. 1D2DSimScore can be used to compare structural features of macromolecular models between alternative structures obtained in a particular experiment or to score various predictions against a defined "ideal" reference structure. Comparisons at the level of contacts are particularly useful for flexible molecules, for which comparisons in 3D that require rigid-body superpositions are difficult, and in biological systems where the formation of specific inter-residue contacts is more relevant for the biological function than the maintenance of a specific global 3D structure. Similarity/dissimilarity scores calculated by 1D2DSimScore can be used to complement scores describing 3D structural similarity measures calculated by the existing tools.


Assuntos
Ácidos Nucleicos , Proteínas , Modelos Moleculares , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...