Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22281081

RESUMO

The potential utility of wastewater-based epidemiology as an early warning tool has been explored widely across the globe during the current COVID-19 pandemic. Methods to detect the presence of SARS-CoV-2 RNA in wastewater were developed early in the pandemic, and extensive work has been conducted to evaluate the relationship between viral concentration and COVID-19 case numbers at the catchment areas of sewage treatment works (STWs) over time. However, no attempt has been made to develop a model that predicts wastewater concentration at fine spatio-temporal resolutions covering an entire country, a necessary step towards using wastewater monitoring for the early detection of local outbreaks. We consider weekly averages of flow-normalised viral concentration, reported as the number of SARS-CoV-2 N1 gene copies per litre (gc/L) of wastewater available at 303 STWs over the period between 1 June 2021 and 30 March 2022. We specify a spatially continuous statistical model that quantifies the relationship between weekly viral concentration and a collection of covariates covering socio-demographics, land cover and virus-associated genomic characteristics at STW catchment areas while accounting for spatial and temporal correlation. We evaluate the models predictive performance at the catchment level through 10-fold cross-validation. We predict the weekly viral concentration at the population-weighted centroid of the 32,844 lower super output areas (LSOAs) in England, then aggregate these LSOA predictions to the Lower Tier Local Authority level (LTLA), a geography that is more relevant to public health policy-making. We also use the model outputs to quantify the probability of local changes of direction (increases or decreases) in viral concentration over short periods (e.g. two consecutive weeks). The proposed statistical framework is able to predict SARS-CoV-2 viral concentration in wastewater at high spatio-temporal resolution across England. Additionally, the probabilistic quantification of local changes can be used as an early warning tool for public health surveillance.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21254231

RESUMO

Clinical testing of children in schools is challenging, with economic implications limiting its frequent use as a monitoring tool of the risks assumed by children and staff during the COVID-19 pandemic. Here, a wastewater based epidemiology approach has been used to monitor 16 schools (10 primary, 5 secondary and 1 post-16 and further education for a total of 17 sites) in England. A total of 296 samples over 9 weeks have been analysed for N1 and E genes using qPCR methods. Of the samples returned, 47.3% were positive for one or both genes with a frequency of detection in line with the respective community. WBE offers a promising low cost, non-invasive approach for supplementing clinical testing and can offer longitudinal insights that are impractical with traditional clinical testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...