Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 59(7): 687-690, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34193467

RESUMO

BACKGROUND: While an association between full mutation CGG-repeat expansions of the Fragile X Mental Retardation 1 (FMR1) gene and connective tissue problems are clearly described, problems in fragile X premutation carriers (fXPCs) CGG-repeat range (55-200 repeats) of the FMR1 gene may be overlooked. OBJECTIVE: To report five FMR1 fXPCs cases with the hypermobile Ehlers-Danlos syndrome (hEDS) phenotype. METHODS: We collected medical histories and FMR1 molecular measures from five cases who presented with joint hypermobility and loose connective tissue and met inclusion criteria for hEDS. RESULTS: Five cases were female and ranged between 16 and 49 years. The range of CGG-repeat allele sizes ranged from 66 to 150 repeats. All had symptoms of hEDS since early childhood. Commonalities in molecular pathogenesis and coexisting conditions between the fXPCs and hEDS are also presented. The premutation can lead to a reduction of fragile X mental retardation protein, which is crucial in maintaining functions of the extracellular matrix-related proteins, particularly matrix metallopeptidase 9 and elastin. Moreover, elevated FMR1 messenger RNA causes sequestration of proteins, which results in RNA toxicity. CONCLUSION: Both hEDS phenotype and premutation involvement may co-occur because of related commonalities in pathogenesis.


Assuntos
Síndrome de Ehlers-Danlos , Síndrome do Cromossomo X Frágil , Pré-Escolar , Síndrome de Ehlers-Danlos/complicações , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Heterozigoto , Humanos , Masculino , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética
2.
Hum Mol Genet ; 26(14): 2627-2633, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28444186

RESUMO

Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by inherited deficiency of the mitochondrial protein Frataxin (FXN), which has no approved therapy and is an area in which biomarkers are needed for clinical development. Here, we investigated the consequences of FXN deficiency in patient-derived FRDA fibroblast cell models, the FRDA mouse model KIKO, and in whole blood collected from patients with FRDA. We observed decreased mitochondrial copy number in all the three FRDA models tested: cells, mice and patient blood. In addition, we observed 40% residual mitochondrial gene expression in FRDA patient blood. These deficiencies of mitochondrial biogenesis in FRDA cells and patient blood are significantly correlated with FXN expression, consistent with the idea that the decreased mitochondrial biogenesis is a consequence of FXN deficiency. The observations appear relevant to the FRDA pathophysiological mechanism, as FXN-dependent deficiency in mitochondrial biogenesis and consequent mitochondrial bioenergetic defect could contribute to the neurodegenerative process. The observations may also have translational potential, as mitochondrial biogenesis could now be followed as a clinical biomarker of FRDA as a correlate of disease severity, progression, and therapeutic effect. Also, mitochondrial copy number in blood is objective, scalar and more investigator-independent than clinical-neurological patient rating scales. Thus, FXN deficiency causes mitochondrial deficiency in FRDA cells, the KIKO mouse model, and in whole blood of patients with FRDA, and this deficiency could potentially be used in clinical trial design.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Ataxia de Friedreich/genética , Expressão Gênica , Genes Mitocondriais , Humanos , Proteínas de Ligação ao Ferro/genética , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...