Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980126

RESUMO

The reaction of unsaturated compounds with ozone (O3) is recognized to lead to the formation of Criegee intermediates (CIs), which play a key role in controlling the atmospheric budget of hydroxyl radicals and secondary organic aerosols. The reaction network of two CIs with different functionality, i.e. acetaldehyde oxide (CH3CHOO) and glyoxal oxide (CHOCHOO) formed in the ozone-assisted oxidation reaction of crotanaldehyde (CA), is investigated over a temperature range between 390 K and 840 K in an atmospheric pressure jet-stirred reactor (JSR) at a residence time of 1.3 s, stoichiometry of 0.5 with a mixture of 1% crotonaldehyde, 10% O2, at an fixed ozone concentration of 1000 ppm and 89% Ar dilution. Molecular-beam mass spectrometry in conjunction with single photon tunable synchrotron vacuum-ultraviolet (VUV) radiation is used to identify elusive intermediates by means of experimental photoionization energy scans and ab initio threshold energy calculations for isomer identification. Addition of ozone (1000 ppm) is observed to trigger the oxidation of CA already at 390 K, which is below the temperature where the oxidation reaction of CA was observed in the absence of ozone. The observed CA + O3 product, C4H6O4, is found to be linked to a ketohydroperoxide (2-hydroperoxy-3-oxobutanal) resulting from the isomerization of the primary ozonide. Products corresponding to the CIs uni- and bi-molecular reactions were observed and identified. A network of CI reactions is identified in the temperature region below 600 K, characterized by CIs bimolecular reactions with species like aldehydes, i.e., formaldehyde, acetaldehyde, and crotonaldehyde and alkenes, i.e., ethene and propene. The region below 600 K is also characterized by the formation of important amounts of typical low-temperature oxidation products, such as hydrogen peroxide (H2O2), methyl hydroperoxide (CH3OOH), and ethyl hydroperoxide (C2H5OOH). Detection of additional oxygenated species such as alcohols, ketene, and aldehydes are indicative of multiple active oxidation routes. This study provides important information about the initial step involved in the CIs assisted oligomerization reactions in complex reactive environments where CIs with different functionalities are reacting simultaneously. It provides new mechanistic insights into ozone-assisted oxidation reactions of unsaturated aldehydes, which is critical for the development of improved atmospheric and combustion kinetics models.

2.
Chemphyschem ; : e202400362, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714496

RESUMO

High temperature dissociations of organic molecules typically involve a competition between radical and molecular processes. In this work, we use a modeling, experiment, theory (MET) framework to characterize the high temperature thermal dissociation of CH2F2, a flammable hydrofluorocarbon (HFC) that finds widespread use as a refrigerant. Initiation in CH2F2 proceeds via a molecular elimination channel; CH2F2→CHF+HF. Here we show that the subsequent self-reactions of the singlet carbene, CHF, are fast multichannel processes and a facile source of radicals that initiate rapid chain propagation reactions. These have a marked influence on the decomposition kinetics of CH2F2. The inclusion of these reactions brings the simulations into better agreement with the present and literature experiments. Additionally, flame simulations indicate that inclusion of the CHF+CHF multichannel reaction leads to a noticeable enhancement in predictions of laminar flame speeds, a key parameter that is used to determine the flammability of a refrigerant.

3.
Proc Natl Acad Sci U S A ; 121(16): e2401148121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602914

RESUMO

The oxidation of cycloalkanes is important in the combustion of transportation fuels and in atmospheric secondary organic aerosol formation. A transient carbon-centered radical intermediate (•QOOH) in the oxidation of cyclohexane is identified through its infrared fingerprint and time- and energy-resolved unimolecular dissociation dynamics to hydroxyl (OH) radical and bicyclic ether products. Although the cyclohexyl ring structure leads to three nearly degenerate •QOOH isomers (ß-, γ-, and δ-QOOH), their transition state (TS) barriers to OH products are predicted to differ considerably. Selective characterization of the ß-QOOH isomer is achieved at excitation energies associated with the lowest TS barrier, resulting in rapid unimolecular decay to OH products that are detected. A benchmarking approach is employed for the calculation of high-accuracy stationary point energies, in particular TS barriers, for cyclohexane oxidation (C6H11O2), building on higher-level reference calculations for the smaller ethane oxidation (C2H5O2) system. The isomer-specific characterization of ß-QOOH is validated by comparison of experimental OH product appearance rates with computed statistical microcanonical rates, including significant heavy-atom tunneling, at energies in the vicinity of the TS barrier. Master-equation modeling is utilized to extend the results to thermal unimolecular decay rate constants at temperatures and pressures relevant to cyclohexane combustion.

4.
J Phys Chem A ; 128(17): 3449-3457, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38642065

RESUMO

Machine learning (ML) provides a great opportunity for the construction of models with improved accuracy in classical molecular dynamics (MD). However, the accuracy of a ML trained model is limited by the quality and quantity of the training data. Generating large sets of accurate ab initio training data can require significant computational resources. Furthermore, inconsistent or incompatible data with different accuracies obtained using different methods may lead to biased or unreliable ML models that do not accurately represent the underlying physics. Recently, transfer learning showed its potential for avoiding these problems as well as for improving the accuracy, efficiency, and generalization of ML models using multifidelity data. In this work, ab initio trained ML-based MD (aML-MD) models are developed through transfer learning using DFT and multireference data from multiple sources with varying accuracy within the Deep Potential MD framework. The accuracy of the force field is demonstrated by calculating rate constants for the H + HO2 → H2 + 3O2 reaction using quasi-classical trajectories. We show that the aML-MD model with transfer learning can accurately predict the rate constants while reducing the computational cost by more than five times compared to the use of more expensive quantum chemistry training data sets. Hence, the aML-MD model with transfer learning shows great potential in using multifidelity data to reduce the computational cost involved in generating the training set for these potentials.

5.
Phys Chem Chem Phys ; 26(17): 13034-13048, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587503

RESUMO

The energetics and kinetics of phenalene and phenalenyl growth reactions were studied theoretically. Rate constants of phenalene and phenalenyl H-abstraction and C2H2 addition to the formed radicals were evaluated through quantum-chemical and rate-theory calculations. The obtained values, assigned to all π radicals, were tested in deterministic and kinetic Monte Carlo simulations of aromatics growth under conditions of laminar premixed flames. Kekulé and non-Kekulé structures of the polycyclic aromatic hydrocarbons (PAHs) evolving in the stochastic simulations were identified by on-the-fly constrained optimization. The numerical results demonstrated an increased PAH growth and qualitatively reproduced experimental observations of Homann and co-workers of non-decaying PAH concentrations with nearly equal abundances of even and odd carbon-atom PAHs. The analysis revealed that the PAH growth proceeds via alternating and sterically diverse acetylene and methyl HACA additions. The rapid and diverse spreading in the PAH population supports a nucleation model as PAH dimerization, assisted by the non-equilibrium phenomena, forming planar aromatics first and then transitioning to the PAH-PAH stacking with size.

6.
J Phys Chem B ; 127(47): 10108-10117, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37980604

RESUMO

This publication presents the first comprehensive experimental study of electron spin coherences in photosynthetic reaction center proteins, specifically focusing on photosystem I (PSI). The ultrafast electron transfer in PSI generates spin-correlated radical pairs (SCRPs), which are entangled spin pairs formed in well-defined spin states (Bell states). Since their discovery in our group in the 1980s, SCRPs have been extensively used to enhance our understanding of structure-function relationships in photosynthetic proteins. More recently, SCRPs have been utilized as tools for quantum sensing. Electron spin decoherence poses a significant challenge in realizing practical applications of electron spin qubits, particularly the creation of quantum entanglement between multiple electron spins. This work is focused on the systematic characterization of decoherence in SCRPs of PSI. These decoherence times were measured as electron spin echo decay times, termed phase memory times (TM), at various temperatures. Decoherence was recorded on both transient SCRP states P700+A1- and thermalized states. Our study reveals that TM exhibits minimal dependence on the biological species, biochemical treatment, and paramagnetic species. The analysis indicates that nuclear spin diffusion and instantaneous diffusion mechanisms alone cannot explain the observed decoherence. As a plausible explanation we discuss the assumption that the low-temperature dynamics of methyl groups in the protein surrounding the unpaired electron spin centers is the main factor governing the loss of the spin coherence in PSI.

7.
Nat Commun ; 14(1): 3227, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270647

RESUMO

Optical centrifuges are laser-based molecular traps that can rotationally accelerate molecules to energies rivalling or exceeding molecular bond energies. Here we report time and frequency-resolved ultrafast coherent Raman measurements of optically centrifuged CO2 at 380 Torr spun to energies beyond its bond dissociation energy of 5.5 eV (Jmax = 364, Erot = 6.14 eV, Erot/kB = 71, 200 K). The entire rotational ladder from J = 24 to J = 364 was resolved simultaneously which enabled a more accurate measurement of the centrifugal distortion constants for CO2. Remarkably, coherence transfer was directly observed, and time-resolved, during the field-free relaxation of the trap as rotational energy flowed into bending-mode vibrational excitation. Vibrationally excited CO2 (ν2 > 3) was observed in the time-resolved spectra to populate after 3 mean collision times as a result of rotational-to-vibrational (R-V) energy transfer. Trajectory simulations show an optimal range of J for R-V energy transfer. Dephasing rates for molecules rotating up to 5.5 times during one collision were quantified. Very slow decays of the vibrational hot band rotational coherences suggest that they are sustained by coherence transfer and line mixing.

8.
J Phys Chem A ; 127(11): 2577-2590, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36905386

RESUMO

The mechanism for hydrocarbon ring growth in sooting environments is still the subject of considerable debate. The reaction of phenyl radical (C6H5) with propargyl radical (H2CCCH) provides an important prototype for radical-radical ring-growth pathways. We studied this reaction experimentally over the temperature range of 300-1000 K and pressure range of 4-10 Torr using time-resolved multiplexed photoionization mass spectrometry. We detect both the C9H8 and C9H7 + H product channels and report experimental isomer-resolved product branching fractions for the C9H8 product. We compare these experiments to theoretical kinetics predictions from a recently published study augmented by new calculations. These ab initio transition state theory-based master equation calculations employ high-quality potential energy surfaces, conventional transition state theory for the tight transition states, and direct CASPT2-based variable reaction coordinate transition state theory (VRC-TST) for the barrierless channels. At 300 K only the direct adducts from radical-radical addition are observed, with good agreement between experimental and theoretical branching fractions, supporting the VRC-TST calculations of the barrierless entrance channel. As the temperature is increased to 1000 K we observe two additional isomers, including indene, a two-ring polycyclic aromatic hydrocarbon, and a small amount of bimolecular products C9H7 + H. Our calculated branching fractions for the phenyl + propargyl reaction predict significantly less indene than observed experimentally. We present further calculations and experimental evidence that the most likely cause of this discrepancy is the contribution of H atom reactions, both H + indenyl (C9H7) recombination to indene and H-assisted isomerization that converts less stable C9H8 isomers into indene. Especially at low pressures typical of laboratory investigations, H-atom-assisted isomerization needs to be considered. Regardless, the experimental observation of indene demonstrates that the title reaction leads, either directly or indirectly, to the formation of the second ring in polycyclic aromatic hydrocarbons.

11.
J Mol Model ; 28(9): 259, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35978224

RESUMO

Phosphorus is a key and vital element for a diverse set of important biological molecules, being indispensable for life as we know. A deeper comprehension of its role in astrochemistry and atmospheric chemistry may aid in finding answers to how this element became available on Earth. The PO molecule is one of the main reservoirs of phosphorus in the interstellar medium (ISM), and a better understanding of the mechanisms and rate coefficients for its formation in the ISM is important for modelling its abundances. In this work, we perform multireference configuration interaction calculations on the formation of PO via the [Formula: see text] reaction, analyzing its potential energy surface and rate coefficients for the global reaction on both doublet and quartet states. We also perform DFT (M06-2X) and CCSD(T) calculations, in order to compare the results. We found that the OPO system possesses a high multiconfigurational character, making DFT and CCSD methodologies not suitable for its potential energy landscape calculation. The rate coefficients have been calculated using the master equation system solver (MESS) package, and the results compared to recent experimental data. It is shown that the quartet state contributes for temperatures higher than 700K. The computed rate coefficient can be described by a modified Arrhenius equation [[Formula: see text]] with [Formula: see text], [Formula: see text] and [Formula: see text] K.


Assuntos
Fósforo
12.
Faraday Discuss ; 238(0): 68-86, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35770694

RESUMO

Low-pressure-limit microcanonical (collisional activation) and thermal rate constants are predicted using a combination of automated ab initio potential energy surface construction, classical trajectories, transition state theory, and a detailed energy- and angular-momentum-resolved collision kernel. Several systems are considered, including CH4 (+M) and HO2 (+M), with an emphasis on systems where experimental information is available for comparison. The a priori approach involves no adjustable parameters, and we show that the predicted thermal rate constants are in excellent agreement with experiments, with average deviations of less than 25%. Notably, the a priori approach is shown to perform equally well for atomic, diatomic, and polyatomic baths, including M = H2O, CO2, and "fuel" baths like M = CH4 and NH3. Finally, the utility of microcanonical rate constants for interpreting trends and inferring mechanistic details in the thermal kinetics is demonstrated.

13.
Phys Chem Chem Phys ; 23(41): 23554-23566, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34651147

RESUMO

Uni- and bi-molecular reactions involving Criegee intermediates (CIs) have been the focus of many studies due to the role these molecules play in atmospheric chemistry. The reactivity of CIs is known to strongly depend on their structure. The reaction network of the second simplest CI, acetaldehyde oxide (CH3CHOO), is investigated in this work in an atmospheric pressure jet-stirred reactor (JSR) during the ozonolysis of trans-2-butene to explore the kinetic pathways relevant to atmospheric chemistry and low-temperature combustion. The mole fraction profiles of reactants, intermediates, and final products are determined by means of molecular-beam mass spectrometry in conjunction with single-photon ionization employing tunable synchrotron-generated vacuum ultraviolet radiation. A network of CI reactions is identified in the temperature region below 600 K, characterized by CI addition to trans-2-butene, water, formaldehyde, formic acid, and methanol. No sequential additions of the CH3CHOO CI are observed, in contrast with the reactivity of the simplest CI (H2COO) and the earlier observation of an extensive reaction network with up to four H2COO sequential additions (Phys. Chem. Chem. Phys., 2019, 21, 7341-7357). Experimental photoionization efficiency scans recorded at 300 K and 425 K and ab initio threshold energy calculations lead to the identification and quantification of previously elusive intermediates, such as ketohydroperoxide and hydroperoxide species. Specifically, the C4H8 + O3 adduct is identified as a ketohydroperoxide (KHP, 3-hydroperoxybutan-2-one, CH3C(O)CH(CH3)OOH), while hydroxyacetaldehyde (glycolaldehyde, HCOCH2OH) formation is attributed to unimolecular isomerization of the CIs. Other hydroperoxide species such as methyl hydroperoxide (CH3OOH), ethyl hydroperoxide (C2H5OOH), butyl hydroperoxide (OOH), hydroperoxyl acetaldehyde (HOOCH2CHO), hydroxyethyl hydroperoxide (CH3CH(OH)OOH), but-1-enyl-3-hydroperoxide, and 4-hydroxy-3-methylpentan-2-one (HOCH(CH3)CH(CH3)C(O)CH3) are also identified. Detection of additional oxygenated species such as methanol, ethanol, ketene, and aldehydes suggests multiple active oxidation routes. These results provide additional evidence that CIs are key intermediates of the ozone-unsaturated hydrocarbon reactions providing critical inputs for improved kinetics models.

14.
J Chem Theory Comput ; 17(9): 5440-5455, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34469127

RESUMO

A general strategy is presented for constructing and validating permutationally invariant polynomial (PIP) expansions for chemical systems of any stoichiometry. Demonstrations are made for three categories of gas-phase dynamics and kinetics: collisional energy-transfer trajectories for predicting pressure-dependent kinetics, three-body collisions for describing transient van der Waals adducts relevant to atmospheric chemistry, and nonthermal reactivity via quasiclassical trajectories. In total, 30 systems are considered with up to 15 atoms and 39 degrees of freedom. Permutational invariance is enforced in PIP expansions with as many as 13 million terms and 13 permutationally distinct atom types by taking advantage of petascale computational resources. The quality of the PIP expansions is demonstrated through the systematic convergence of in-sample and out-of-sample errors with respect to both the number of training data and the order of the expansion, and these errors are shown to predict errors in the dynamics for both reactive and nonreactive applications. The parallelized code distributed as part of this work enables the automation of PIP generation for complex systems with multiple channels and flexible user-defined symmetry constraints and for automatically removing unphysical unconnected terms from the basis set expansions, all of which are required for simulating complex reactive systems.

15.
J Phys Chem Lett ; 12(37): 9169-9174, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34525799

RESUMO

Potential energy surfaces fit with basis set expansions have been shown to provide accurate representations of electronic energies and have enabled a variety of high-accuracy dynamics, kinetics, and spectroscopy applications. The number of terms in these expansions scales poorly with system size, a drawback that challenges their use for systems with more than ∼10 atoms. A solution is presented here using dictionary learning. Subsets of the full set of conventional basis functions are optimized using a newly developed multipass greedy regression method inspired by forward and backward selection methods from the statistics, signal processing, and machine learning literatures. The optimized representations have accuracies comparable to the full set but are 1 or more orders of magnitude smaller, and notably, the number of terms in the optimized multipass greedy expansions scales approximately linearly with the number of atoms.

16.
Science ; 373(6555): 679-682, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34353951

RESUMO

A prototypical hydroperoxyalkyl radical (•QOOH) intermediate, transiently formed in the oxidation of volatile organic compounds, was directly observed through its infrared fingerprint and energy-dependent unimolecular decay to hydroxyl radical and cyclic ether products. Direct time-domain measurements of •QOOH unimolecular dissociation rates over a wide range of energies were found to be in accord with those predicted theoretically using state-of-the-art electronic structure characterizations of the transition state barrier region. Unimolecular decay was enhanced by substantial heavy-atom tunneling involving O-O elongation and C-C-O angle contraction along the reaction pathway. Master equation modeling yielded a fully a priori prediction of the pressure-dependent thermal unimolecular dissociation rates for the •QOOH intermediate-again increased by heavy-atom tunneling-which are required for global models of atmospheric and combustion chemistry.

17.
J Phys Chem A ; 125(7): 1505-1516, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33560846

RESUMO

In low-temperature flash photolysis of NH3/O2/N2 mixtures, the NH2 consumption rate and the product distribution is controlled by the reactions NH2 + HO2 → products (R1), NH2 + H (+M) → NH3 (+M) (R2), and NH2 + NH2 (+M) → N2H4 (+M) (R3). In the present work, published flash photolysis experiments by, among others, Cheskis and co-workers, are re-interpreted using recent direct measurements of NH2 + H (+N2) and NH2 + NH2 (+N2) from Altinay and Macdonald. To facilitate analysis of the FP data, relative third-body collision efficiencies compared to N2 for R2 and R3 were calculated for O2 and NH3 as well as for other selected molecules. Results were in good agreement with the limited experimental data. Based on reported NH2 decay rates in flash photolysis of NH3/O2/N2, a rate constant for NH2 + HO2 → NH3 + O2 (R1a) of k1a = 1.5(±0.5) × 1014 cm3 mol-1 s-1 at 295 K was derived. This value is higher than earlier determinations based on the FP results but in good agreement with recent theoretical work. Kinetic modeling of reported N2O yields indicates that NH2 + HO2 → H2NO + O (R1c) is competing with R1a, but perturbation experiments with addition of CH4 indicate that it is not a dominating channel. Measured HNO profiles indicate that this component is formed directly by NH2 + HO2 → HNO + H2O (R1b), but theoretical work indicates that R1b is only a minor channel. Based on this analysis, we estimate k1c = 2.5 × 1013 cm3 mol-1 s-1 and k1b = 2.5 × 1012 cm3 mol-1 s-1 at 295 K, with significant uncertainty margins.

18.
J Phys Chem A ; 124(48): 9897-9914, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33174431

RESUMO

The accelerating chemical effect of ozone addition on the oxidation chemistry of methyl hexanoate [CH3(CH2)4C(═O)OCH3] was investigated over a temperature range from 460 to 940 K. Using an externally heated jet-stirred reactor at p = 700 Torr (residence time τ = 1.3 s, stoichiometry φ = 0.5, 80% argon dilution), we explored the relevant chemical pathways by employing molecular-beam mass spectrometry with electron and single-photon ionization to trace the temperature dependencies of key intermediates, including many hydroperoxides. In the absence of ozone, reactivity is observed in the so-called low-temperature chemistry (LTC) regime between 550 and 700 K, which is governed by hydroperoxides formed from sequential O2 addition and isomerization reactions. At temperatures above 700 K, we observed the negative temperature coefficient (NTC) regime, in which the reactivity decreases with increasing temperatures, until near 800 K, where the reactivity increases again. Upon addition of ozone (1000 ppm), the overall reactivity of the system is dramatically changed due to the time scale of ozone decomposition in comparison to fuel oxidation time scales of the mixtures at different temperatures. While the LTC regime seems to be only slightly affected by the addition of ozone with respect to the identity and quantity of the observed intermediates, we observed an increased reactivity in the intermediate NTC temperature range. Furthermore, we observed experimental evidence for an additional oxidation regime in the range near 500 K, herein referred to as the extreme low-temperature chemistry (ELTC) regime. Experimental evidence and theoretical rate constant calculations indicate that this ELTC regime is likely to be initiated by H abstraction from methyl hexanoate via O atoms, which originate from thermal O3 decomposition. The theoretical calculations show that the rate constants for methyl ester initiation via abstraction by O atoms increase dramatically with the size of the methyl ester, suggesting that ELTC is likely not important for the smaller methyl esters. Experimental evidence is provided indicating that, similar to the LTC regime, the chemistry in the ELTC regime is dominated by hydroperoxide chemistry. However, mass spectra recorded at various reactor temperatures and at different photon energies provide experimental evidence of some differences in chemical species between the ELTC and the LTC temperature ranges.

19.
Phys Chem Chem Phys ; 22(33): 18304-18319, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32785311

RESUMO

The high temperature gas phase chemistry of the four butyl radical isomers (n-butyl, sec-butyl, iso-butyl, and tert-butyl) was investigated in a combined experimental and theoretical study. Organic nitrites were used as convenient and clean sources of each of the butyl radical isomers. Rate coefficients for dissociation of each nitrite were obtained experimentally and are at, or close to, the high pressure limit. Low pressure experiments were performed in a diaphragmless shock tube with laser schlieren densitometry at post-shock pressures of 65, 130, and 260 Torr and post-shock temperatures of 700-1000 K. Additional experiments were conducted with iso-butyl radicals at 805 K and 8.7 bar to elucidate changes in mechanism at higher pressures. These experiments were performed in a miniature shock tube with synchrotron-based photoionization mass spectrometry. The mass spectra confirmed that scission of the O-NO bond is the primary channel by which the precursors dissociate, but they also provided evidence of a minor channel (<7.7%) through HNO loss and formation of an aldehyde. These high pressure experiments were also used to determine the disproportionation/recombination ratio for iso-butyl radicals as 0.3. Reanalysis of the lower-temperature literature and the present data yielded rate constants for the disproportionation reaction, iso-butyl + iso-butyl = iso-butene + iso-butane. A chemical kinetics model was developed for the reactions of the butyl isomers that included new paths for highly energized adducts. These adducts are formed by the addition of H, CH3 or C2H5 to the butyl radicals. Accompanying theoretical investigations show that chemically activated pathways are competitive with stabilization of the adduct by collision under the conditions of the laser schlieren experiments. These calculations also show that at 10 bar and T < 1000 K stabilization is the only important reaction, but at higher temperatures, even at 10 bar, chemically activated product channels should also be considered. Branching fractions and rate coefficients are presented for these reactions. This study also highlights the importance of the radical structure for determining branching ratios for disproportionation and recombination of alkyl radicals, and these were facilitated by theoretical calculations of recombination rate coefficients for the four butyl radical isomers. The results reveal previously unknown features of butyl radical chemistry under conditions that are relevant to a wide range of applications and reaction mechanisms are presented that incorporate pressure dependent rate coefficients for the key steps.

20.
J Phys Chem A ; 124(7): 1205-1226, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31944118

RESUMO

Low-pressure-limit microcanonical rate constants, κ0(E,J), describe the rate of activating bath gas collisions in a unimolecular reaction and are calculated here using classical trajectories and quantized thresholds for reaction. The resulting semiclassical rate constants are two-dimensional (in total energy E and total angular momentum J) and are intermediate in complexity between the four-dimensional state-to-state collisional energy and angular momentum transfer rate constant, R(E',J';E,J), and the highly averaged thermal rate constant, k0. Results are presented for CH4 (+M), C2Hx (+M), x = 3-6, and H2O (+M), where κ0(E,J) is shown generally to be a sensitive function of the bath gas, temperature, and initial state of the unimolecular reactant. Strong variations in κ0 with respect to E and J lead to complex trends in relative microcanonical bath gas efficiencies. This underlying complexity may complicate the search for simple explanations for observed trends in relative thermal bath gas efficiencies. A different measure of the microcanonical collision efficiency that describes the energy range of activating collisions is introduced that supports the empirical decomposition of collisional activation into separable translational-to-vibrational and rotational-to-vibrational activation mechanisms. The two mechanisms depend differently on mass, temperature, and the J-dependence of the threshold energy for reaction, with rotational-to-vibrational activation favored for heavier baths and for reactions with rigid transition states. Finally, κ0 is used to test the accuracy of several two-dimensional models for R that were proposed for use in master equation studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...